Skip to main content
Log in

Mammalian urine concentration: a review of renal medullary architecture and membrane transporters

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Mammalian kidneys play an essential role in balancing internal water and salt concentrations. When water needs to be conserved, the renal medulla produces concentrated urine. Central to this process of urine concentration is an osmotic gradient that increases from the corticomedullary boundary to the inner medullary tip. How this gradient is generated and maintained has been the subject of study since the 1940s. While it is generally accepted that the outer medulla contributes to the gradient by means of an active process involving countercurrent multiplication, the source of the gradient in the inner medulla is unclear. The last two decades have witnessed advances in our understanding of the urine-concentrating mechanism. Details of medullary architecture and permeability properties of the tubules and vessels suggest that the functional and anatomic relationships of these structures may contribute to the osmotic gradient necessary to concentrate urine. Additionally, we are learning more about the membrane transporters involved and their regulatory mechanisms. The role of medullary architecture and membrane transporters in the mammalian urine-concentrating mechanism are the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Wei et al. (2015), with permission

Fig. 4

Modified from Pannabecker (2013), with permission

Fig. 5

Reproduced from Issaian et al. (2012), with permission

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

AMPK:

Adenosine monophosphate kinase

ATL:

Ascending thin limb

AVP:

Arginine vasopressin

AVR:

Ascending vasa recta

CD:

Collecting duct

dDAVP:

Desmopressin

DTL:

Descending thin limb

DVR:

Descending vasa recta

Epac:

Exchange protein activated by cAMP

IM:

Inner medulla

IMCD:

Inner medullary collecting duct

ISOM:

Inner stripe of the outer medulla

LXR:

Liver X receptor

NHE3:

Na+/H+ exchanger 3

NKCC2:

Na+–K+–2Cl cotransporter 2

OM:

Outer medulla

OSOM:

Outer stripe of the outer medulla

P2Y12-R:

Purinergic P2Y12 receptor

PGE2 :

Prostaglandin E2

PRR:

Prorenin receptor

sPRR:

Soluble prorenin receptor

STZ:

Streptozotocin

TAL:

Thick ascending limb

UT:

Urea transporter

V2R:

Arginine vasopressin receptor 2

References

  • Advani A, Kelly DJ, Cox AJ, White KE, Advani SL, Thai K, Connelly KA, Yuen D, Trogadis J, Herzenberg AM, Kuliszewski MA, Leong-Poi H, Gilbert RE (2009) The (pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension 54:261–269

    CAS  PubMed  Google Scholar 

  • Al-bataineh MM, Li H, Ohmi K, Gong F, Marciszyn AL, Naveed S, Zhu X, Neumann D, Wu Q, Cheng L, Fenton RA, Pastor-Soler NM, Hallows KR (2016) Activation of the metabolic sensor AMP-activated protein kinase inhibits aquaporin-2 function in kidney principal cells. Am J Physiol 311:F890–F900

    CAS  Google Scholar 

  • Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW (1995) Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 48:1206–1215

    CAS  PubMed  Google Scholar 

  • Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol 301:F1143–F1159

    CAS  Google Scholar 

  • Arystarkhova E, Bouley R, Liu YB, Sweadner KJ (2017) Impaired AQP2 trafficking in Fyxd1 knockout mice: a role for FYXD1 in regulated vesicular transport. PLoS One 12(11):e0188006

    PubMed  PubMed Central  Google Scholar 

  • Aw M, Armstrong TM, Nawata CM, Bodine SN, Oh JJ, Wei G, Evans KK, Shahidullah M, Rieg T, Pannabecker TL (2018) Body mass-specific Na+, K+-ATPase activity in the medullary thick ascending limb—implications for species-dependent urine concentrating mechanisms. J Am Physiol. https://doi.org/10.1152/ajpregu.00289.2017

    Article  Google Scholar 

  • Bachmann S, Kriz W (1982) Histotopography and ultrastructure of the thin limbs of the loop of Henle in the hamster. Cell Tissue Res 225:111–127

    CAS  PubMed  Google Scholar 

  • Bagnasco SM, Peng T, Janech MG, Karakashian A, Sands JM (2001) Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene. Am J Physiol 281:F400–F406

    CAS  Google Scholar 

  • Bagnasco SM, Peng T, Nakayama Y, Sands JM (2000) Differential expression of individual UT-A urea transporter isoforms in rat kidney. J Am Soc Nephrol 11:1980–1986

    CAS  PubMed  Google Scholar 

  • Bai JJ, Tan CD, Chow BKC (2017) Secretin, at the hub of water-salt homeostasis. Am J Physiol 312:F852-F860

    Google Scholar 

  • Bankir L, Kriz W (1995) Adaptation of the kidney to protein intake and to urine concentrating activity: similar consequences in health and CRF. Kidney Int 47:7–24

    CAS  PubMed  Google Scholar 

  • Bankir L, De Rouffignac C (1985) Urinary concentrating ability: insights from comparative anatomy. Am J Physiol 249:R643–R666

    CAS  PubMed  Google Scholar 

  • Bardoux P, Ahloulay M, Le Maout S, Bankir L, Trinh-Trang-Tan M-M (2001) Aquaporin-2 and urea transporter-A1 are up-regulated in rats with type I diabetes mellitus. Diabetologia 44:637–645

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Bartter FC, Pronove P, Gill JR Jr, MacCardle RC (1998) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. 1962. J Am Soc Nephrol 9:516–528

    CAS  PubMed  Google Scholar 

  • Bertuccio CA, Ibarra FR, Toledo JE, Arrizurieta EE, Martin RS (2002) Endogenous vasopressin regulates Na-K-ATPase and Na+–K+–Cl cotransporter rbsc-1 in rat outer medulla. Am J Physiol 282:F265–F270

    Google Scholar 

  • Besseghir K, Trimble ME, Stoner L (1986) Action of ADH on isolated medullary thick ascending limb of the Brattleboro rat. Am J Physiol 251:F271–F277

    CAS  PubMed  Google Scholar 

  • Beuchat CA (1996) Structure and concentrating ability of the mammalian kidney: correlations with habitat. Am J Physiol 271:R157–R179

    CAS  PubMed  Google Scholar 

  • Blount MA, Cipriani P, Redd SK, Ordas RJ, Black LN, Gumina DL, Hoban CA, Klein JD, Sands JM (2015) Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct. Am J Physiol 309:C608–C615

    Google Scholar 

  • Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM (2007) Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am J Physiol 293:F1308–F1313

    CAS  Google Scholar 

  • Blount MA, Mistry AC, Frohlich O, Price SR, Chen G, Sands JM, Klein JD (2008) Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol 295:F295–F299

    CAS  Google Scholar 

  • Boone M, Deen PMT (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 456:1005–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB (1982) Thick ascending limb of Henle’s loop. Kidney Int 22:454–464

    CAS  PubMed  Google Scholar 

  • Caceres PS, Mendez M, Haque MZ, Ortiz PA (2016) Vesicle-associated membrane protein 3 (VAMP3) mediates constitutive trafficking of the renal co-transporter NKCC2 in thick ascending limbs: role in renal function and blood pressure. J Biol Chem 291:22063–22073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Penalver JL, Griera M, Serrano I, Rodríguez-Puyol D, Dedhar S, de Frutos S, Rodríguez-Puyol M (2014) Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption. FASEB J 28:3645–3659

    CAS  PubMed  Google Scholar 

  • Castrop H, Schießl IM (2014) Physiology and pathophysiology of the renal Na–K–2Cl cotransporter (NKCC2). Am J Physiol 307:F991–F1002

    CAS  Google Scholar 

  • Centrone M, Ranieri M, Di Mise A, Berlingerio SP, Russo A, Deen PMT, Staub O, Valenti G, Tamma G (2017) AQP2 abundance is regulated by the E3-ligase CHIP via HSP70. Cell Physiol Biochem 44:515–531

    PubMed  Google Scholar 

  • Chen J, Edwards A, Layton AT (2009a) A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. Am J Physiol 297:F537–F548

    CAS  Google Scholar 

  • Chen J, Edwards A, Layton AT (2010) Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. Am J Physiol 298:F1369–F1383

    CAS  Google Scholar 

  • Chen J, Layton AT, Edwards A (2009b) A mathematical model of oxygen transport in the rat outer medulla: I. Model formulation and baseline results. Am J Physiol 297:F537–F548

    CAS  Google Scholar 

  • Chen L, Lee JW, Chou CL, Nair AV, Battistone MA, Paunescu TG, Merkulova M, Breton S, Verlander JW, Wall SM, Brown D, Burg MB, Knepper MA (2017) Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-sEq. Proc Natl Acad Sci 114:9989–9998

    Google Scholar 

  • Chou CL, Hwang G, Hageman DJ, Han L, Agrawal P, Pisitkun T, Knepper MA (2018) Identification of UT-A1 and AQP2 interacting proteins in rat inner medullary collecting duct. Am J Physiol 314:C99–C117

    Google Scholar 

  • Chou CL, Knepper MA (1992) In vitro perfusion of chinchilla thin limb segments: segmentation and osmotic water permeability. Am J Physiol 263:F417–F426

    CAS  PubMed  Google Scholar 

  • Chou CL, Knepper MA (1993) In vitro perfusion of chinchilla thin limb segments: urea and NaCl permeabilities. Am J Physiol 264:F337–F343

    CAS  PubMed  Google Scholar 

  • Chou CL, Ma T, Yang B, Knepper MA, Verkman AS (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554

    CAS  PubMed  Google Scholar 

  • Chou CL, Nielsen S, Knepper MA (1993) Structural-functional correlation in chinchilla long loop of Henle thin limbs: a novel papillary subsegment. Am J Physiol 265:F863–F874

    CAS  PubMed  Google Scholar 

  • Christensen EI, Grann B, Kristoffersen IB, Skriver E, Thomsen JS, Andreasen A (2014) Three-dimensional reconstruction of the rat nephron. Am J Physiol 306:F664–671

    CAS  Google Scholar 

  • Christensen EI, Wagner CA, Kaissling B (2012) Uriniferous tubule: structural and functional organization. Compr Physiol 2:805–861

    PubMed  Google Scholar 

  • Clapp WL, Madsen KM, Verlander JW, Tisher CC (1989) Morphologic heterogeneity along the rat inner medullary collecting duct. Lab Invest 60:219–230

    CAS  PubMed  Google Scholar 

  • Cousin C, Bracquart D, Contrepas A, Corvol P, Muller L, Nguyen G (2009) Soluble form of the (pro)renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension 53:1077–1082

    CAS  PubMed  Google Scholar 

  • Dantzler WH, Layton AT, Layton HE, Pannabecker TL (2014) Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clin J Am Nephrol 9:1781–1789

    CAS  Google Scholar 

  • Dikic I, Robertson M (2012) Ubiquitin ligases and beyond. BMC Biol 10:22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsam RT, Kunapuli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113:340–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269:F663–F672

    CAS  PubMed  Google Scholar 

  • Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA (2004) Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci 101:7469–7474

    CAS  PubMed  Google Scholar 

  • Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP (2002a) Structure and characterization of the mouse UT-A gene (Slc14a2). Am J Physiol 282:F630–F638

    CAS  Google Scholar 

  • Fenton RA, Knepper MA (2007) Mouse models and the urinary concentrating mechanism in the new millennium. Physiol Rev 87:1083–1112

    CAS  PubMed  Google Scholar 

  • Fenton RA, Poulsen SB, de la Mora Chavez S, Soleimani M, Dominguez Rieg JA, Rieg T (2017) Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int 92:397–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, Smith CP (2002b) Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol 283:F817–F825

    CAS  Google Scholar 

  • Fenton RA, Yang B (2014) Urea transporter knockout mice and their renal phenotypes. Subcell Biochem 73:137–152

    CAS  PubMed  Google Scholar 

  • Franchini KG, Cowley AW Jr (1996) Sensitivity of the renal medullary circulation to plasma vasopressin. Am J Physiol 271:R647–R653

    CAS  PubMed  Google Scholar 

  • Frigeri A, Gropper MA, Turck CW, Verkman AS (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci 92:4328–4331

    CAS  PubMed  Google Scholar 

  • Fry BC, Edwards A, Sgouralis I, Layton AT (2014) Impact of renal medullary three-dimensional architecture on oxygen transport. Am J Physiol 307:F263–F272

    CAS  Google Scholar 

  • Gamble JL, McKhann CF, Butler AM, Tuthill E (1934) An economy of water in renal function referable to urea. Am J Physiol 109:139–154

    CAS  Google Scholar 

  • Garg LC, Knepper MA, Burg MB (1981) Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 240:F536–F544

    CAS  PubMed  Google Scholar 

  • Geering, K (2006) FXYD proteins: new regulators of Na–K–ATPase. Am J Physiol 290:F241–F250

    CAS  Google Scholar 

  • Gong Y, Himmerkus N, Sunq A, Milatz S, Merkel C, Bleich M, Hou J (2017) ILDR1 is important for paracellular water transport and urine concentration mechanism. Proc Natl Acad Sci 114:5271–5276

    CAS  PubMed  Google Scholar 

  • Good DW (1990) Inhibition of bicarbonate absorption by peptide hormones and cyclic adenosine monophosphate in rat medullary thick ascending limb. J Clin Invest 85:1006–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk CW, Mylle M (1959) Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol 196:927–936

    CAS  PubMed  Google Scholar 

  • Greger R, Velazquez H (1987) The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int 31:590–596

    CAS  PubMed  Google Scholar 

  • Gunaratne R, Braucht DWW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA (2010) Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells. Proc Natl Acad Sci 107:15653–15658

    CAS  PubMed  Google Scholar 

  • Hasler U, Leroy V, Martin P-Y, Feraille E (2009) Aquaporin-2 abundance in the renal collecting duct: new insights from cultured cell models. Am J Physiol 297:F10–F18

    CAS  Google Scholar 

  • Hassouneh R, Nasrallah R, Zimpelmann J, Gutsol A, Eckert D, Ghossein J, Burns KD, Hebert RL (2016) PGE2 receptor EP3 inhibits water reabsorption and contributes to polyuria and kidney injury in a streptozotocin-induced mouse model of diabetes. Diabetologia 59:1318–1328

    CAS  PubMed  Google Scholar 

  • Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Physiol 246:F745–F756

    CAS  PubMed  Google Scholar 

  • Hervy S, Thomas SR (2003) Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model. Am J Physiol 284:F65–F81

    CAS  Google Scholar 

  • Hoban CA, Black LN, Ordas RJ, Gumina DL, Pulous FE, Sim JH, Sands JM, Blount MA (2015) Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. Am J Physiol 308:F49–F55

    CAS  Google Scholar 

  • van Hoek AN, Bouley R, Lu Y, Silberstein C, Brown D, Wax MB, Patil RV (2009) Vasopressin-induced differential stimulation of AQP4 splice variants regulates the in-membrane assembly of orthogonal arrays. Am J Physiol 296:F1396–F1404

    Google Scholar 

  • Imai M, Hayashi M, Araki M (1984) Functional heterogeneity of the descending limbs of Henle’s loop. I. Internephron heterogeneity in the hamster kidney. Pflugers Arch 402:385–392

    CAS  PubMed  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci 91:6269–6273

    CAS  PubMed  Google Scholar 

  • Issaian T, Urity VB, Dantzler WH, Pannabecker TL (2012) Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism. Am J Physiol 302:R748–R756

    Google Scholar 

  • Jamison RL, Gehrig JJ Jr (2011) Urinary concentration and dilution: physiology. In: Terjung R (ed) Handbook of physiology, renal physiology. Am Physiol Soc, Bethesda, pp 1219–1279

    Google Scholar 

  • Jamison RL, Kriz W (1982) Urinary concentrating mechanism. Oxford University Press, New York

    Google Scholar 

  • Jen JF, Stephenson JL (1994) Externally driven countercurrent multiplication in a mathematical model of the urinary concentrating mechanism of the renal inner medulla. Bull Math Biol 56:491–514

    CAS  PubMed  Google Scholar 

  • Jiang T, Li Y, Layton AT, Wang W, Sun Y, Li M, Zhou H, Yang B (2017) Generation and phenotypic analysis of mice lacking all urea transporters. Kidney Int 91:338–351

    CAS  PubMed  Google Scholar 

  • Jung HJ, Kwon T-H (2016) Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol 311:F1318–F1328

    Google Scholar 

  • Kaissling B, Kriz W (1992) Morphology of the loop of Henle, distal tubule, and collecting duct. In: Windhager EE (ed) Handbook of physiology, Sec. 8, Renal physiology. Oxford University Press, New York, pp 109–167

    Google Scholar 

  • Karakashian A, Timmer RT, Klein JD, Gunn RB, Sands JM, Bagnasco SM (1999) Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT-A3 and UT-A4. J Am Soc Nephrol 10:230–237

    CAS  PubMed  Google Scholar 

  • Kim G-H, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA (1999) Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol 276:F96–F103

    CAS  PubMed  Google Scholar 

  • Kim J-E, Jung HJ, Lee Y-J, Kwon T-H (2015) Vasopressin-regulated miRNAs and AQP2-targeting miRNAs in kidney collecting duct cells. Am J Physiol 308:F749–F764

    CAS  Google Scholar 

  • Kim J, Pannabecker TL (2010) Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow. Am J Physiol 299:F273–F279

    CAS  Google Scholar 

  • Kim D, Sands JM, Klein JD (2003) Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. Am J Physiol 285:F303–F309

    CAS  Google Scholar 

  • King LS, Choi M, Fernandez PC, Cartron J-P, Agre P (2001) Defective urinary concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 345:175–179

    CAS  PubMed  Google Scholar 

  • Kiroytcheva M, Cheval L, Carranza ML, Martin P-Y, Favre H, Doucet A, Feraille E (1999) Effect of cAMP on the activity and the phosphorylation of Na+, K+-ATPase in rat thick ascending limb of Henle. Kidney Int 55:1819–1831

    CAS  PubMed  Google Scholar 

  • Klein JD (2014) Expression of urea transporters and their regulation. Subcell Biochem 73:79–108

    CAS  PubMed  Google Scholar 

  • Klein JD, Martin CF, Kent KJ, Sands JM (2012) Protein kinase C-α mediates hypertonicity-stimulated increase in urea transporter phosphorylation in the inner medullary collecting duct. Am J Physiol 302:F1098–F1103

    CAS  Google Scholar 

  • Klein JD, Sands JM (2016) Urea transport and clinical potential of urearetics. Curr. Opin Nephrol Hypertens 25:444–451

    CAS  Google Scholar 

  • Klein JD, Wang Y, Blount MA, Molina PA, LaRocque LM, Ruiz JA, Sands JM (2016a) Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. Am J Physiol 310:F1008–F1012

    CAS  Google Scholar 

  • Klein JD, Wang Y, Mistry A, LaRocque LM, Molina PA, Rogers RT, Blount MA, Sands JM (2016b) Transgenic restoration of urea transporter A1 confers maximal urinary concentration in the absence of urea transporter A3. J Am Soc Nephrol 27:1448–1455

    CAS  PubMed  Google Scholar 

  • Knepper MA (1982) Measurement of osmolality in kidney slices using vapor pressure osmometry. Kidney Int 21:653–655

    CAS  PubMed  Google Scholar 

  • Knepper MA, Kim G-H, Fernandez-Llama P, Ecelbarger CA (1999) Regulation of thick ascending limb transport by vasopressin. J Am Soc Nephrol 10:628–634

    CAS  PubMed  Google Scholar 

  • Knepper MA, Roch-Ramel F (1987) Pathways of urea transport in the mammalian kidney. Kidney Int 31:629–633

    CAS  PubMed  Google Scholar 

  • Knepper MA, Saidel GM, Hascall VC, Dwyer T (2003) Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol 284:F433–F446

    CAS  Google Scholar 

  • Kokko JP, Rector FC Jr (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    CAS  PubMed  Google Scholar 

  • Kone BC, Madsen KM, Tisher CC (1984) Ultrastructure of the thick ascending limb of Henle in the rat kidney. Am J Anat 171:217–226

    CAS  PubMed  Google Scholar 

  • Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA (2015) Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol 309:F280–F299

    CAS  Google Scholar 

  • Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 241:R3–R16

    CAS  PubMed  Google Scholar 

  • Kriz W (1982) Structural organization of renal medullary circulation. Nephron 31:290–295

    CAS  PubMed  Google Scholar 

  • Kuhn W, Ryffel K (1942) Herstellung konzentrierter losüngen aus verdünten durch blosse membranwirkung: ein modellversuch zur funktion der niere. Hoppe-Seylers Z Physiol Chem 276:145–178

    CAS  Google Scholar 

  • Lam AKM, Ko BCB, Tam S, Morris R, Yang JY, Chung SK, Chung SMS (2004) Osmotic response element-binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. J Biol Chem 279:48048–48054

    CAS  PubMed  Google Scholar 

  • Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200:1139–1146

    CAS  PubMed  Google Scholar 

  • Layton AT (2011) A mathematical model of the urine concentrating mechanism in the rat renal medulla: II. Functional implications of three-dimensional architecture. Am J Physiol 300:F372-F384

    Google Scholar 

  • Layton AT, Gilbert RL, Pannabecker TL (2012) Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. Am J Physiol 302:F830–F839

    Google Scholar 

  • Layton AT, Layton HE (2011) Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. Am J Physiol 301:F1047–F1056

    CAS  Google Scholar 

  • Layton AT, Layton HE, Dantzler WH, Pannabecker TL (2009) The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology 24:250–256

    CAS  PubMed  Google Scholar 

  • Layton AT, Pannabecker TL, Dantzler WH, Layton HE (2004) Two modes for concentrating urine in the rat inner medulla. Am J Physiol 287:F816–F839

    CAS  Google Scholar 

  • Layton AT, Pannabecker TL, Dantzler WH, Layton HE (2010) Functional implications of the three-dimensional architecture of the rat renal inner medulla. Am J Physiol 298:F973–F987

    CAS  Google Scholar 

  • Lee Y-J, Song I-K, Jang K-J, Nielsen J, Frokiaer J, Nielsen S, Kwon T-H (2007) Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol 292:F340–F350

    CAS  Google Scholar 

  • Lei T, Zhou L, Layton AT, Zhou H, Zhao X, Bankir L, Yang B (2011) Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism. Am J Physiol 301:F1251–F1259

    CAS  Google Scholar 

  • Lemley KV, Kriz W (1987) Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int 31:538–548

    CAS  PubMed  Google Scholar 

  • Lemley KV, Kriz W (1991) Anatomy of the renal interstitium. Kidney Int 39:370–381

    CAS  PubMed  Google Scholar 

  • Li X, Chen G, Yang B (2012) Urea transporter physiology studied in knockout mice. Front Physiol 3:217

    PubMed  PubMed Central  Google Scholar 

  • Li C, Wang W (2014) Urea transport mediated by aquaporin water channel proteins. Subcell Biochem 73:227–265

    CAS  PubMed  Google Scholar 

  • Li Y, Wei Y, Zheng F, Guan Y, Zhang X (2017) Prostaglandin E2 in the regulation of water transport in renal collecting ducts. Int J Mol Sci 18:2539

    PubMed Central  Google Scholar 

  • Lim S-W, Han K-H, Jung J-Y, Kim W-Y, Yang C-W, Sands JM, Knepper MA, Madsen KM, Kim J (2006) Ultrastructural localization of UT-A and UT-B in rat kidneys with different hydration status. Am J Physiol 290:R479–R492

    CAS  Google Scholar 

  • Lu X, Wang F, Xu C, Soodvilai S, Peng K, Su J, Zhao L, Yang KT, Feng Y, Zhou S-F, Gustafsson J-A, Yang T (2016)) Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci 113:E1898–E1906

    CAS  PubMed  Google Scholar 

  • Luo Y, Liu Y, Liu M, Wei J, Zhang Y, Hou J, Huang W, Wang T, Li X, He Y, Ding F, Yuan L, Cai J, Zheng F, Tang JY (2014) Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. Biochim Biophys Acta 1839:97–106

    CAS  PubMed  Google Scholar 

  • Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849

    CAS  PubMed  Google Scholar 

  • Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2000) Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci 97:4386–4391

    CAS  PubMed  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    CAS  PubMed  Google Scholar 

  • MacPhee PJ, Michel CC (1995) Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats. J Physiol 487:169–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen KM, Clapp WL, Verlander JW (1988) Structure and function of the inner medullary collecting duct. Kidney Int 34:441–454

    CAS  PubMed  Google Scholar 

  • Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michalek K (2016) Aquaglyceroporins in the kidney: present state of knowledge and prospects. J Physiol Pharmacol 67:185–193

    CAS  PubMed  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    CAS  PubMed  Google Scholar 

  • Moffat DB, Fourman J (1963) The vascular pattern of the rat kidney. J Anat 97:543–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mount DB (2014) Thick ascending limb of the loop of Henle. Clin J Am Soc Nephrol 9:1974–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mutig K, Borowski T, Boldt C, Borschewski A, Paliege A, Popova E, Bader M, Bachmann S (2016) Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. Am J Physiol 311:F411–F423

    CAS  Google Scholar 

  • Mutig K, Paliege A, Kahl T, Jons T, Muller-Esterl W, Bachmann S (2007) Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol 293:F1166–F1177

    CAS  Google Scholar 

  • Nawata CM, Dantzler WH, Pannabecker TL (2015) Alternative channels for urea in the inner medulla of the rat kidney. Am J Physiol 309:F916–F924

    CAS  Google Scholar 

  • Nawata CM, Evans KK, Dantzler WH, Pannabecker TL (2014) Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle’s loop. Am J Physiol 306:F123–F129

    CAS  Google Scholar 

  • Nejsum LN, Kwon T-H, Marples D, Flyvbjerg A, Knepper MA, Frokiaer J, Nielsen S (2001) Compensatory increase in AQP2, p-AQP2, and AQP3 expression in rats with diabetes mellitus. Am J Physiol 280:F715–F726

    CAS  Google Scholar 

  • Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer J-D (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci 90:11663–11667

    CAS  PubMed  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    CAS  PubMed  Google Scholar 

  • Nielsen S, Maunsbach AB, Ecelbarger CA, Knepper MA (1998) Ultrastructural localization of Na-K-2Cl cotransporter in thick ascending limb and macula densa of rat kidney. Am J Physiol 275:F885–F893

    CAS  PubMed  Google Scholar 

  • Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P, Maunsbach AB (1995) Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268:F1023–F1037

    CAS  PubMed  Google Scholar 

  • Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA (1996) Cellular and subcellular localization of the vasopressin-regulated urea transporter in rat kidney. Proc Natl Acad Sci 93:5495–5500

    CAS  PubMed  Google Scholar 

  • Olesen ETB, Fenton RA (2017) Aquaporin-2 membrane targeting: still a conundrum. Am J Physiol 312:F744–F747

    CAS  Google Scholar 

  • Olesen ETB, Moeller HB, Assentoft M, MacAulay N, Fenton RA (2016) The vasopressin type 2 receptor and prostaglandin receptors EP2 and EP4 can increase aquaporin-2 plasma membrane targeting through a cAMP-independent pathway. Am J Physiol 311:F935–F944

    CAS  Google Scholar 

  • Olesen ETB, Rutzler MR, Moeller HB, Praetorius HA, Fenton RA (2011) Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc Natl Acad Sci 108:12949–12954

    CAS  PubMed  Google Scholar 

  • Oliver JA (1968) Nephrons and kidneys: A quantitative study of developmental and evolutionary mammalian renal architectonics. Harper and Row, New York

    Google Scholar 

  • Olives B, Mattei M-G, Huet M, Neau P, Martial S, Cartron J-P, Bailly P (1995) Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem 270:15607–15610

    CAS  PubMed  Google Scholar 

  • Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron J-P, Ripoche P (1994) Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 269:31649–31652

    CAS  PubMed  Google Scholar 

  • Pallone TL, Edwards A, Mattson DL (2012) Renal medullary circulation. Compr Physiol 2:97–140

    PubMed  Google Scholar 

  • Pallone TL, Turner MR, Edwards A, Jamison RL (2003) Countercurrent exchange in the renal medulla. Am J Physiol 284:R1153–R1175

    CAS  Google Scholar 

  • Pallone TL, Work J, Myers RL, Jamison RL (1994) Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest 93:212–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pannabecker TL (2013) Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am J Physiol 304:R488–R503

    CAS  Google Scholar 

  • Pannabecker TL, Dantzler WH (2004) Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts. Am J Physiol 287:F767–F774

    CAS  Google Scholar 

  • Pannabecker TL, Dantzler WH (2006) Three-dimensional architecture of inner medullary vasa recta. Am J Physiol 290:F1355–F1366

    CAS  Google Scholar 

  • Pannabecker TL, Dantzler WH (2007) Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla. Am J Physiol 293:F696–F704

    CAS  Google Scholar 

  • Pannabecker TL, Dantzler WH, Layton HE, Layton AT (2008a) Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol 295:F1271–F1285

    CAS  Google Scholar 

  • Pannabecker TL, Henderson C, Dantzler WH (2008b) Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla. Am J Physiol 294:1306–1314

    Google Scholar 

  • Pannabecker TL, Layton A (2014) Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. Am J Physiol 307:F649-F655

    Google Scholar 

  • Pannabecker TL, Rosen S (2017) Outer stripe of the outer medulla in human and pig kidney is markedly reduced or absent compared to rat. J Am Soc Nephrol 28(Abstract Supplement):130

    Google Scholar 

  • Pannabecker TL, Dantzler WH (2008) Quantitative analysis of renal inner medullary structure. FASEB J 22

  • Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PMT, Kohan DE (2015) Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10:135–146

    CAS  PubMed  Google Scholar 

  • Perucca J, Bouby N, Valeix P, Bankir L (2007) Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. Am J Physiol 292:R700–R705

    CAS  Google Scholar 

  • Peter KP (1909) Untersuchungen uber bau und entwickelung der niere. Gustav Fischer, Jena

    Google Scholar 

  • Potter EA, Stewart G, Smith CP (2006) Urea flux across MDCK-mUT-A2 monolayers is acutely sensitive to AVP, cAMP, and [Ca2+]i. Am J Physiol 291:F122–F128

    CAS  Google Scholar 

  • Poulsen SB, Kim Y-H, Frokiaer J, Nielsen S, Christensen BM (2013) Long-term vasopressin-V2-receptor stimulation induces regulation of aquaporin 4 protein in renal inner medulla and cortex of Brattleboro rats. Nephrol Dial Transplant 28:2058–2065

    CAS  PubMed  Google Scholar 

  • Promeneur D, Bankir L, Hu M-C, Trinh-Trang-Tan M-M (1998) Renal tubular and vascular urea transporters: influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats. J Am Soc Nephrol 9:1359–1366

    CAS  PubMed  Google Scholar 

  • Qian X, Sands JM, Song X, Chen G (2016) Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation. Pflugers Arch 468:1161–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, van Hoek AN, Siragy HM, Ichihara A, Kohan DE (2015) Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol 309:F48–F56

    CAS  Google Scholar 

  • Ren H, Gu L, Andreasen A, Thomsen JS, Cao L, Christensen EI, Zhai XY (2014) Spatial organization of the vascular bundle and the interbundle region: three-dimensional reconstruction at the inner stripe of the outer medulla in the mouse kidney. Am J Physiol 306:F321–326

    CAS  Google Scholar 

  • Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V (2013) Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 182:96–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rollhauser H, Kriz W, Heinke W (1964) Das gefass-system der rattenniere. Zeitschrift fur Zellforschung 64:381–403

    Google Scholar 

  • Rutishauser J, Kopp P (1999) Aquaporin-2 water channel mutation and nephrogenic diabetes insipidus: new variation on a theme. Eur J Endocrinol 140:137–139

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Nonoguchi H, Takayama M, Yang T, Terada Y, Inoue T, Nakayama Y, Kohda Y, Sasaki S, Tomita K (2005) Differential effects of hyperosmolality on Na-K-ATPase and vasopressin-dependent cAMP generation in the medullary thick ascending limb and outer medullary collecting duct. Hypertens Res 28:671–679

    CAS  PubMed  Google Scholar 

  • Sands JM, Blount MA (2014) Genes and proteins of urea transporters. Subcell Biochem 73:45–64

    CAS  PubMed  Google Scholar 

  • Sands JM, Layton HE (2014) Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 76:387–409

    CAS  PubMed  Google Scholar 

  • Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253:F823-F832

    Google Scholar 

  • Satake M, Ikarashi N, Kagami M, Ogiue N, Toda T, Kobayashi Y, Ochiai W, Sugiyama K (2010) Increases in the expression levels of aquaporin-2 and aquaporin-3 in the renal collecting tubules alleviate dehydration associated with polyuria in diabetes mellitus. Biol Pharm Bull 12:1965–1970

    Google Scholar 

  • Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen B (1995) The renal concentrating mechanism in insects and mammals: a new hypothesis involving hydrostatic pressures. Am J Physiol 268:R1087–R1100

    CAS  PubMed  Google Scholar 

  • Schwartz MM, Karnovsky MJ, Venkatachalam MA (1979) Regional membrane specialization in the thin limbs of Henle loops as seen by freeze-fracture electron-microscopy. Kidney Int 16:577–589

    CAS  PubMed  Google Scholar 

  • Schwartz MM, Venkatachalam MA (1974) Structural differences in thin limbs of Henle: physiological implications. Kidney Int 6:193–208

    CAS  PubMed  Google Scholar 

  • Sever R, Glass CK (2013) Signaling by nuclear receptors. Cold Spring Harb Perspect Biol 5:a016709

    PubMed  PubMed Central  Google Scholar 

  • Shayakul C, Knepper MA, Smith CP, DiGiovanni SR, Hediger MA (1997) Segmental local-ization of urea transporter mRNAs in rat kidney. Am J Physiol 272:F654–F660

    CAS  PubMed  Google Scholar 

  • Shayakul C, Smith CP, Mackenzie HS, Lee W-S, Brown D, Hediger MA (2000) Long-term regulation of urea transporter expression by vasopressin in Brattleboro rats. Am J Physiol 278:F620–F627

    CAS  Google Scholar 

  • Shayakul C, Steel A, Hediger MA (1996) Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest 98:2580–2587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shayakul C, Tsukaguchi H, Berger UV, Hediger MA (2001) Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts. Am J Physiol 280:F487–F494

    CAS  Google Scholar 

  • Skorecki KL, Brown D, Ercolani L, Ausiello DA (2011) Molecular mechanisms of vasopressin action in the kidney. Compr Physiol:1185–1218

  • Smith CP, Lee W-S, Martial S, Knepper MA, You G, Sands JM, Hediger MA (1995) Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest 96:1556–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CP, Potter EA, Fenton RA, Stewart GS (2004) Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am J Physiol 287:C1087–C1093

    CAS  Google Scholar 

  • Sonntag SR, Ziemans A, Wulfmeyer VC, Milatz S, Bleich M, Himmerkus N (2018) Diuretic state affects ascending thin limb tight junctions. Am J Physiol 314:F190-195

    Google Scholar 

  • Soodvilai S, Jia Z, Fongsupa S, Chatsudthipong V, Yang T (2012) Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells. Am J Physiol 303:F1610–F1616

    CAS  Google Scholar 

  • Stephenson JL (1972) Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2:85–94

    CAS  PubMed  Google Scholar 

  • Stewart GS, Fenton RA, Wang W, Kwon T-H, White SJ, Collins VM, Cooper G, Nielsen S, Smith CP (2004) The basolateral expression of mUT-A3 in the mouse kidney. Am J Physiol 286:F979–F987

    CAS  Google Scholar 

  • Stewart GS, King SL, Potter EA, Smith CP (2007) Acute regulation of mUT-A3 urea transporter expressed in a MDCK cell line. Am J Physiol 292:F1157–F1163

    CAS  Google Scholar 

  • Su W, Huang S-Z, Gao M, Kong X-M, Gustafsson J-Å, Xu S-J, Wang B, Zheng F, Chen L-H, Wang N-P, Guan Y-F, Zhang X-Y (2017) Liver X receptor increases aquaporin 2 protein level via a posttranscriptional mechanism in renal collecting ducts. Am J Physiol 312:F619–F628

    CAS  Google Scholar 

  • Tamura Y, Mori N, Xu B, Nakamura T, Yamakoshi S, Hirose T, Ito O, Totsune K, Takahashi K, Kohzuki M (2016) Water deprivation increases (pro)renin receptor levels in the kidney and decreases plasma concentrations of soluble (pro)renin receptor. Tohoku J Exp Med 239:185–192

    CAS  PubMed  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    CAS  PubMed  Google Scholar 

  • Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 271:F414–F422

    CAS  PubMed  Google Scholar 

  • Terris JM, Knepper MA, Wade JB (2001) UT-A3: localization and characterization of an additional urea transporter isoform in the IMCD. Am J Physiol 280:F325–F332

    CAS  Google Scholar 

  • Thomas SR (2000) Inner medullary lactate production and accumulation: a vasa recta model. Am J Physiol 279:F468–F481

    CAS  Google Scholar 

  • Thomas SR, Wexler AS (1995) Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism. Am J Physiol 269:F159-F171

    Google Scholar 

  • Trimpert C, Wesche D, de Groot T, Pimentel Rodriguez MM, Wong V, van den Berg DTM, Cheval L, Ariza CA, Doucet A, Stagljar I, Deen PMT (2017) NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS One 12(9):e0183774

    PubMed  PubMed Central  Google Scholar 

  • Trinh-Trang-Tan M-M, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron J-P, Bailly P (2002) UT-B1 proteins in rat: tissue distribution and regulation by antidiuretic hormone in kidney. Am J Physiol 283:F912–F922

    Google Scholar 

  • Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S (2005) Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol Cell Biol 25:7357–7363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urity VB, Issaian T, Braun EJ, Dantzler WH, Pannabecker TL (2012) Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle’s loop. Am J Physiol 302:R720–R726

    CAS  Google Scholar 

  • Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, Kim G-H, Knepper MA (2000) UT-A2: a 55 kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol 278:F52–F62

    CAS  Google Scholar 

  • Wang Y, Klein JD, Blount MA, Martin CF, Kent KJ, Pech V, Wall SM, Sands JM (2009) Epac regulates UT-A1 to increase urea transport in inner medullary collecting ducts. J Am Soc Nephrol 20:2018–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Klein JD, Froehlich O, Sands JM (2013) Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts. Am J Physiol 304:F233–F238

    CAS  Google Scholar 

  • Wang Y, Klein JD, Liedtke CM, Sands JM (2010) Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. Am J Physiol 299:F1401–F1406

    CAS  Google Scholar 

  • Wang X, Thomas SR, Wexler AS (1998) Outer medullary anatomy and the urine concentrating mechanism. Am J Physiol 274:F413–F424

    CAS  PubMed  Google Scholar 

  • Wang F, Lu X, Peng K, Fang H, Zhou L, Su J, Nau A, Yang KT, Ichihara A, Lu A, Zhou S-F, Yang T (2016a) Antidiuretic action of collecting duct (pro)renin receptor downstream of vasopressin and PGE2 receptor EP4. J Am Soc Nephrol 27:3022–3034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang XH, Wang H, Chen L, Klein JD, Sands JM (2016b) Urea transporter B and microRNA-200c differ in kidney outer versus inner medulla following dehydration. Am J Med Sci 352:296–301

    PubMed  PubMed Central  Google Scholar 

  • Wei G, Rosen S, Dantzler WH, Pannabecker TL (2015) Architecture of the human renal inner medulla and functional implications. Am J Physiol 309:F627–F637

    CAS  Google Scholar 

  • Westrick KY, Serack BJ, Dantzler WH, Pannabecker TL (2013) Axial compartmentation of descending and ascending thin limbs of Henle’s loops. Am J Physiol 304:F308–F316

    CAS  Google Scholar 

  • Wu Q, Moeller HB, Stevens DA, Sanchez-Hodge R, Childers G, Kortenoeven MLA, Cheng L, Rosenbaek LL, Rubel C, Patterson C, Pisitkun T, Schisler JC, Fenton RA (2018) CHIP regulates aquaporin-2 quality control and body water homeostasis. J Am Soc Nephrol 29:936–948

    PubMed  Google Scholar 

  • Xu Y, Olives B, Bailly P, Fischer E, Ripoche P, Ronco P, Cartron J-P, Rondeau E (1997) Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 51:138–146

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Wilson DR, Baumal R (1984) Blood supply and drainage of the outer medulla of the rat kidney: scanning electron microscopy of microvascular casts. Anat Rec 210:273–277

    CAS  PubMed  Google Scholar 

  • Yang B, Bankir L (2005) Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol 288:F881–F896

    CAS  Google Scholar 

  • Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS (2002) Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem 277:10633–10637

    CAS  PubMed  Google Scholar 

  • Yao L, Huang D-Y, Pfaff IL, Nie X, Leitges M, Vallon V (2004) Evidence for a role of protein kinase C-α in urine concentration. Am J Physiol 287:F299–F304

    CAS  Google Scholar 

  • You G, Smith CP, Kanai Y, Lee W-S, Stelzner M, Hediger MA (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    CAS  PubMed  Google Scholar 

  • Yuan J, Pannabecker TL (2010) Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange. Am J Physiol 299:F265–F272

    CAS  Google Scholar 

  • Zhai X-Y, Fenton RA, Andreasen A, Thomsen JS, Christensen EI (2007) Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons. J Am Soc Nephrol 18:2937–2944

    PubMed  Google Scholar 

  • Zhai X-Y, Thomsen JS, Birn H, Kristoffersen IB, Andreasen A, Christensen EI (2006) Three-dimensional reconstruction of the mouse nephron. J Am Soc Nephrol 17:77–88

    PubMed  Google Scholar 

  • Zhang Y, Peti-Peterdi J, Muller CE, Carlson NG, Baqi Y, Strasburg DL, Heiney KM, Villanueva K. Kohan DE, Kishore BK (2015) P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J Am Soc Nephrol 26:2978–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-Y, Wang B, Guan Y-F (2016) Nuclear receptor regulation of aquaporin-2 in the kidney. Int J Mol Sci 17:1105

    PubMed Central  Google Scholar 

  • Zhao H, Wiederkehr MR, Fan L, Collazo RL, Crowder LA, Moe OW (1999) Acute inhibition of Na/H exchanger NHE-3 by cAMP. Role of protein kinase A and NHE-3 phosphoserines 552 and 605. J Biol Chem 274:3978–3987

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant DK083338, National Science Foundation Grant IOS-0952885 and Joint DMS/NIGMS Initiative under NSF Grant DMS-1263943.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michele Nawata.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawata, C.M., Pannabecker, T.L. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 188, 899–918 (2018). https://doi.org/10.1007/s00360-018-1164-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-018-1164-3

Keywords

Navigation