Skip to main content

Advertisement

Log in

The Effect of Habitat Fragmentation on Cyclic Population Dynamics: A Numerical Study

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Through four spatially explicit models, we investigate how habitat fragmentation affects cyclic predator–prey population dynamics. We use a Partial Differential Equation (PDE) framework to describe the dispersal of predators and prey in a heterogeneous landscape made of high quality and low quality habitat patches, subject to increasing fragmentation through habitat separation and/or habitat loss. Our results show that habitat fragmentation decreases the amplitude of the predator–prey population cycles while average population density is not as strongly affected in general. Beyond these simple trends however, the four models show differing responses to fragmentation, indicating that when making predictions about population survival and persistence in the face of habitat fragmentation, the choice of model is important. Our results may inform conservation efforts in fragmented habitats for cyclic species such as the snowshoe hare and Canada lynx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P.A., Ginzburg, L.R., 2000. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337–341.

    Article  Google Scholar 

  • Akcakaya, H.R., 1992. Population cycles of mammals: evidence for a ratio-dependent hypothesis. Ecol. Monogr. 62(1), 119–142.

    Article  Google Scholar 

  • Ali, S.W., Cosner, C., 1995. Models for the effects of individual size and spatial scale on competition between species in heterogeneous environments. Math. Biosci. 127, 45–76.

    Article  MATH  Google Scholar 

  • Bazykin, A.D., 1974. Sistema Volterra i uravnenie Mihaelisa–Menten. Voprosy Matematicheskoy Genetiki. Nauka, Novosibirsk.

    Google Scholar 

  • Braza, P.A., 2003. The bifurcation structure of the Holling–Tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1991. The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1998. On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., 1999. Diffusion models for population dynamics incorporating individual behaviour at boundaries: applications to refuge design. Theor. Popul. Biol. 55, 189–207.

    Article  MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., 2001. Spatial heterogeneity and critical patch size: area effects via diffusion in closed environments. J. Theor. Biol. 209, 161–171.

    Article  Google Scholar 

  • Cantrell, R.S., Cosner, C., Fagan, W.F., 1998. Competitive reversals inside ecological reserves: the role of external habitat degradation. J. Math. Biol. 37, 491–533.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrell, R.S., Cosner, C., Fagan, W.F., 2001. How predator incursions affect critical patch size: the role of the functional response. Am. Nat. 158(4), 368–375.

    Article  Google Scholar 

  • Dunning, J.B. Jr., Stewart, D.J., Danielson, B.J., Noon, B.R., Lamberson, R.H., Stevens, E.E., 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl. 5(1), 3–11.

    Article  Google Scholar 

  • Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515.

    Article  Google Scholar 

  • Ginzburg, L.R., 1998. Assuming reproduction to be a function of consumption raises doubts about some popular predator–prey models. J. Anim. Ecol. 67, 325–327.

    Article  Google Scholar 

  • Hanski, I., Ovaskainen, O., 2000. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758.

    Article  Google Scholar 

  • Hanski, I., Turchin, P., Korpimaki, E., Henttonen, H., 1993. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232–235.

    Article  Google Scholar 

  • Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R., 1994. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75(1), 17–29.

    Article  Google Scholar 

  • Kareiva, P., 1990. Population dynamics in spatially complex environments: theory and data. Philos. Trans. R. Soc. Lond. B 330, 175–190.

    Article  Google Scholar 

  • Krebs, C.J., Boutin, S., Boonstra, R., 2001. Ecosystem Dynamics of the Boreal Forest. Oxford University Press, New York.

    Google Scholar 

  • Leslie, P.H., 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245.

    MATH  MathSciNet  Google Scholar 

  • Levin, S.A., 1974. Dispersion and population interactions. Am. Nat. 108, 207–228.

    Article  Google Scholar 

  • May, R.M., 1974. Stability and Complexity in Model Ecosytems. Princeton University Press, Princeton.

    Google Scholar 

  • McKenzie, H.W., 2006. Linear features impact predator–prey encounters: analysis with first passage time. Master’s thesis, University of Alberta.

  • Moorcroft, P.R., Lewis, M.A., 2006. Mechanistic Home Range Analysis. Princeton University Press, Princeton.

    Google Scholar 

  • Mowat, G., Slough, B., 2003. Habitat preference of Canada lynx through a cycle in snowshoe hare abundance. Can. J. Zool. 81, 1736–1745.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology. Springer, New York.

    Book  MATH  Google Scholar 

  • Murray, D.L., 2000. A geographic analysis of snowshoe hare population demography. Can. J. Zool. 78, 1207–1217.

    Article  Google Scholar 

  • Neuhauser, C., 1998. Habitat destruction and competitive coexistence in spatially explicit models with local interactions. J. Theor. Biol. 193, 445–463.

    Article  Google Scholar 

  • Okubo, A., Levin, S.A., 2001. Diffusion and Ecological Problems: Modern Perspectives. Springer, New York.

    Google Scholar 

  • Poggiale, J.-C., Auger, P., 2004. Impact of spatial heterogeneity on a predator–prey system dynamics. Biol. Model. 327, 1058–1063.

    Google Scholar 

  • Poggiale, J.-C., Auger, P., Nerini, D., Mante, C., Gilbert, F., 2005. Global production increased by spatial heterogeneity in a population dynamics model. Acta Biotheor. 53, 359–370.

    Article  Google Scholar 

  • Poole, K.G., 1997. Dispersal patterns of lynx in the Northwest Territories. J. Wildlife Manag. 61(2), 497–505.

    Article  Google Scholar 

  • Poole, K.J., 2003. A review of Canadian lynx. Can. Field Nat. 117(3), 360–376.

    MathSciNet  Google Scholar 

  • Pulliam, R., 1988. Sources, sinks and population regulation. Am. Nat. 132, 652–661.

    Article  Google Scholar 

  • Rosenzweig, M.L., MacArthur, R.H., 1963. Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97(895), 209–223.

    Article  Google Scholar 

  • Ruggiero, L.F., Aubry, K.B., Buskirk, S.W., Koehler, G.M., Krebs, C.J., McKelvery, K.S., Squires, J.R., 2000. Ecology and Conservation of Lynx in the United States. University Press of Colorado, Boulder.

    Google Scholar 

  • Ryall, K.L., Fahrig, L., 2006. Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87(5), 1086–1093.

    Article  Google Scholar 

  • Saez, E., Gonzalez-Olivares, E., 1999. Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878.

    Article  MATH  MathSciNet  Google Scholar 

  • Shampine, L.F., Reichelt, M.W., 1997. The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  • Sherratt, J.A., Lewis, M.A., Fowler, A.C., 1995. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 92(7), 2524–2528.

    Article  MATH  Google Scholar 

  • Sherratt, J.A., Eagan, B.T., Lewis, M.A., 1997. Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos. Trans., Biol. Sci. 352(1349), 21–38.

    Article  Google Scholar 

  • Sherratt, J.A., Lambin, X., Thomas, C.J., Sherratt, T.N., 2002. Generation of periodic waves by landscape features in cyclic predator–prey systems. Proc. R. Soc. Lond. B 269, 327–334.

    Article  Google Scholar 

  • Tanner, J.T., 1975. The stability and the intrinsic growth rates of predator populations. Ecology 56, 855–867.

    Article  Google Scholar 

  • Travis, J.M.J., French, D.R., 2000. Dispersal functions and spatial models: expanding our dispersal toolbox. Ecol. Lett. 3, 163–165.

    Article  Google Scholar 

  • Turchin, P., 2001. Complex Population Dynamics. Princeton University Press, Princeton.

    Google Scholar 

  • Turchin, P., Batzli, G., 2001. Availability of food and the population dynamics of arvicoline rodents. Ecology 82, 1521–1534.

    Article  Google Scholar 

  • Tyson, R., Haines, S., Hodges, K., Modelling the Canada lynx and snowshoe hare population cycle: the role of specialist predators. J. Theor. Ecol., submitted.

  • Van Kirk, R.W., Lewis, M.A., 1997. Integro-difference models for persistence in fragmented habitats. Bull. Math. Biol. 59(1), 107–137.

    Article  MATH  Google Scholar 

  • Ylonen, H., Pech, R., Davis, S., 2003. Heterogeneous landscapes and the role of refuge on the population dynamics of a specialist predator and its prey. Evol. Ecol. 17, 349–369.

    Article  Google Scholar 

  • Yodzis, P., 1994. Predator–prey theory and management of multispecies fisheries. Ecol. Appl. 4, 51–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tyson.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohm, S., Tyson, R. The Effect of Habitat Fragmentation on Cyclic Population Dynamics: A Numerical Study. Bull. Math. Biol. 71, 1323–1348 (2009). https://doi.org/10.1007/s11538-009-9403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9403-0

Keywords

Navigation