Skip to main content
Log in

The effects of spatial heterogeneity in population dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The dynamics of a population inhabiting a heterogeneous environment are modelled by a diffusive logistic equation with spatially varying growth rate. The overall suitability of an environment is characterized by the principal eigenvalue of the corresponding linearized equation. The dependence of the eigenvalue on the spatial arrangement of regions of favorable and unfavorable habitat and on boundary conditions is analyzed in a number of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, K. J., Lin, C. C.: On the existence of positive eigenfunctions for an eigenvalue with an indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980)

    Google Scholar 

  2. Cantrell, R. S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. Roy. Soc. Edinb. 112, 293–318 (1989)

    Google Scholar 

  3. Figueiredo, de D. G.: Positive solutions of semilinear elliptic problems. In: Figueiredo, D. G. de, Honig, C. S. (eds.) (Lect. Notes Maths., vol. 957, pp. 34–88). Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  4. Levin, S.: Population models and community structure in heterogeneous environments. In: Hallam, T. G., Levin, S. (eds.) Mathematical ecology (Lect. Notes Biomath., vol. 17). Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  5. Ludwig, D., Aronson, D. G., Weinberger, H. F.: Spatial patterning of the spruce budworm. J. Math. Biology 8, 217–258 (1979)

    Google Scholar 

  6. MacArthur, R. H., Wilson, E. O.: The theory of island biogeography. Princeton: Princeton University Press, 1967

    Google Scholar 

  7. Manes, A., Micheletti, A. M.: Un' estensione della teoria variazionale classica degli autovalori per operatori ellitici del secondo ordine. Boll. U.M.I. 7, 285–301 (1973)

    Google Scholar 

  8. Murray, J. D., Sperb, R. P.: Minimum domains for spatial patterns in a class of reaction-diffusion equations. J. Math. Biology 18, 169–184 (1983)

    Google Scholar 

  9. Newmark, W. D.: Species-area relationship and its determinants for mammals in western North American national parks. Biol. J. Linnean Soc. 28, 83–98 (1986)

    Google Scholar 

  10. Okubo, A.: Diffusion and ecological problems: mathematical models. Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  11. Seno, H.: Effect of a singular patch on population persistence in a multi-patch system. Ecol. Modell. 43, 271–286 (1988)

    Google Scholar 

  12. Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Google Scholar 

  13. Soule, M. E., Wilcox, B. A. (eds.): Conservation biology: an evolutionary-ecological perspective. Sunderland, Mass.: Sinauer 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by National Science Foundation grant #DMS 88-02346

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantrell, R.S., Cosner, C. The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991). https://doi.org/10.1007/BF00167155

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00167155

Key words

Navigation