Skip to main content

Advertisement

Log in

Modeling Proximal Tubule Cell Homeostasis: Tracking Changes in Luminal Flow

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

During normal kidney function, there are routinely wide swings in proximal tubule fluid flow and proportional changes in Na+ reabsorption across tubule epithelial cells. This “glomerulotubular balance” occurs in the absence of any substantial change in cell volume, and is thus a challenge to coordinate luminal membrane solute entry with peritubular membrane solute exit. In this work, linear optimal control theory is applied to generate a configuration of regulated transporters that could achieve this result. A previously developed model of rat proximal tubule epithelium is linearized about a physiologic reference condition; the approximate linear system is recast as a dynamical system; and a Riccati equation is solved to yield the optimal linear feedback that stabilizes Na+ flux, cell volume, and cell pH. The first observation is that optimal feedback control is largely consigned to three physiologic variables, cell volume, cell electrical potential, and lateral intercellular hydrostatic pressure. Parameter modulation by cell volume stabilizes cell volume; parameter modulation by electrical potential or interspace pressure act to stabilize Na+ flux and cell pH. This feedback control is utilized in a tracking problem, in which reabsorptive Na+ flux varies over a factor of two, in order to represent a substantial excursion of glomerulotubular balance. The resulting control parameters consist of two terms, an autonomous term and a feedback term, and both terms include transporters on both luminal and peritubular cell membranes. Overall, the increase in Na+ flux is achieved with upregulation of luminal Na+/H+ exchange and Na+–glucose cotransport, with increased peritubular Na+–3HCO 3 and K+–Cl cotransport, and with increased Na+, K+–ATPase activity. The configuration of activated transporters emerges as a testable hypothesis of the molecular basis for glomerulotubular balance. It is suggested that the autonomous control component at each cell membrane could represent the cytoskeletal effects of luminal flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpern, R.J., Cogan, M.G., Rector, F.C. Jr., 1983. Flow dependence of proximal tubular bicarbonate absorption. Am. J. Physiol. 245, F478–F484.

    Google Scholar 

  • Baines, A.D., 1971. Effect of extracellular fluid volume expansion on maximum glucose reabsorption rate and glomerular tubular balance in single rat nephrons. J. Clin. Invest. 50, 2414–2425.

    Article  Google Scholar 

  • Baum, M., Berry, C.A., 1985. Peritubular protein modulates neutral active NaCl absorption in rabbit proximal convoluted tubule. Am. J. Physiol. 248, F790–F795.

    Google Scholar 

  • Beck, J.S., Hurst, A.M., Lapointe, J.-Y., Laprade, R., 1993. Regulation of basolateral K channels in proximal tubule studied during continuous microperfusion. Am. J. Physiol. 264, F496–F501.

    Google Scholar 

  • Beck, J.S., Potts, D.J., 1990. Cell swelling, co-transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules. J. Physiol. 425, 369–378.

    Google Scholar 

  • Berry, C.A., Cogan, M.G., 1981. Influence of peritubular protein on solute absorption in the rabbit proximal tubule. A specific effect on NaCl transport. J. Clin. Invest. 68, 506–516.

    Article  Google Scholar 

  • Brenner, B.M., Falchuk, K.H., Keimowitz, R.I., Berliner, R.W., 1969. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J. Clin. Invest. 48, 1519–1531.

    Article  Google Scholar 

  • Brenner, B.M., Troy, J.L., 1971. Postglomerular vascular protein concentration: Evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. Clin. Invest. 50, 336–349.

    Article  Google Scholar 

  • Breton, S., Marsolais, M., Lapointe, J.Y., Laprade, R., 1996. Cell volume increases of physiologic amplitude activate basolateral K and Cl conductances in the rabbit proximal convoluted tubule. J. Am. Soc. Nephrol. 7, 2072–2087.

    Google Scholar 

  • Burg, M.B., Patlak, C., Green, N., Villey, D., 1976. Organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol. 231, 627–637.

    Google Scholar 

  • Chan, Y.L., Biagi, B., Giebisch, G., 1982. Control mechanisms of bicarbonate transport across the rat proximal convoluted tubule. Am. J. Physiol. 242, F532–F543.

    Google Scholar 

  • Du, Z., Duan, Y., Yan, Q., Weinstein, A.M., Weinbaum, S., Wang, T., 2004. Mechanosensory function of microvilli of the kidney proximal tubule. Proc. Natl. Acad. Sci. 101, 13068–13073.

    Article  Google Scholar 

  • Du, Z., Yan, Q., Duan, Y., Weinbaum, S., Weinstein, A.M., Wang, T., 2006. Axial flow modulates proximal tubule NHE3 and H–ATPase activities by changing microvillous bending moments. Am. J. Physiol. 290, F289–F296.

    Google Scholar 

  • Dubinsky, W.P., Mayorga-Wark, O., Schultz, S.G., 1999. Volume regulatory responses of basolateral membrane vesicles from Necturus enterocytes: Role of the cytoskeleton. Proc. Natl. Acad. Sci. 96, 9421–9426.

    Article  Google Scholar 

  • Earley, L.E., Martino, J.A., Friedler, R.M., 1966. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J. Clin. Invest. 45, 1668–1684.

    Article  Google Scholar 

  • Earley, L.E., Schrier, R.W., 1973. Intrarenal control of sodium excretion by hemodynamic and physical factors. In: Orloff, J., Berliner, R.W. (Eds.), Handbook of Physiology. Sect. 8: Renal Physiology, pp. 721–762. American Physiological Society, Washington.

    Google Scholar 

  • Gertz, K.H., Boylan, J.W., 1973. Glomerular-tubular balance. In: Orloff, J., Berliner, R.W. (Eds.), Handbook of Physiology. Section 8: Renal Physiology, pp. 763–790. American Physiological Society, Washington.

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G., 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J. Membr. Biol. 71, 89–94.

    Article  Google Scholar 

  • Green, R., Moriarty, R.J., Giebisch, G., 1981. Ionic requirements of proximal tubular fluid reabsorption: Flow dependence of fluid transport. Kidney Int. 20, 580–587.

    Article  Google Scholar 

  • Green, R., Windhager, E.E., Giebisch, G., 1974. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am. J. Physiol. 226, 265–276.

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G., 1982. Sodium-coupled amino acid and sugar transport by Necturus small intestine. An equivalent electrical circuit analysis of a rheogenic co-transport system. J. Membr. Biol. 66, 25–39.

    Article  Google Scholar 

  • Guo, P., Weinstein, A.M., Weinbaum, S., 2000. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am. J. Physiol. 279, F698–F712.

    Google Scholar 

  • Haberle, D.A., von Baeyer, H., 1983. Characteristics of glomerulotubular balance. Am. J. Physiol. 244, F355–F366.

    Google Scholar 

  • Imai, M., Kokko, J.P., 1974. Transtubular oncotic pressure gradients and net fluid transport in isolated proximal tubules. Kidney Int. 6, 138–145.

    Article  Google Scholar 

  • Kawamura, J., Mazumdar, D.C., Lubowitz, H., 1977. Effect of albumin infusion on renal glucose reabsorption in the rat. Am. J. Physiol. 232, F286–F290.

    Google Scholar 

  • Kinsella, J.L., Aronson, P.S., 1980. Properties of the Na+–H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238, F461–F469.

    Google Scholar 

  • Kleinman, D.L., 1968. On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13, 114–115.

    Article  Google Scholar 

  • Knight, T.F., Senekjian, H.O., Sansom, S.C., Weinman, E.J., 1980. Proximal tubule glucose efflux in the rat as a function of delivered load. Am. J. Physiol. 238, F499–F503.

    Google Scholar 

  • Knox, F.G., Schneider, E.G., Willis, L.R., Strandhoy, J.W., Ott, C.E., 1973. Effect of volume expansion on sodium excretion in the presence and absence of increased delivery from superficial proximal tubules. J. Clin. Invest. 52, 1642–1646.

    Article  Google Scholar 

  • Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., Haussinger, X., 1998a. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.

    Google Scholar 

  • Lang, F., Busch, G.L., Volkl, H., 1998b. The diversity of volume regulatory mechanisms. Cell. Physiol. Biochem. 8, 1–45.

    Article  Google Scholar 

  • Lau, K.R., Hudson, R.L., Schultz, S.G., 1984. Cell swelling increases a barium-inhibitable potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. 81, 3591–3594.

    Article  Google Scholar 

  • Lewy, J.E., Windhager, E.E., 1968. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Physiol. 214, 943–954.

    Google Scholar 

  • Liu, F.-Y., Cogan, M.G., 1988. Flow dependence of bicarbonate transport in the early (S1) proximal convoluted tubule. Am. J. Physiol. 254, F851–F855.

    Google Scholar 

  • Maddox, D.A., Fortin, S.M., Tartini, A., Barnes, W.D., Gennari, F.J., 1992. Effect of acute changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex. J. Clin. Invest. 89, 1296–1303.

    Article  Google Scholar 

  • Martino, J.A., Earley, L.E., 1967. Demonstration of a role of physical factors as determinants of the natriuretic response to volume expansion. J. Clin. Invest. 46, 1963–1978.

    Article  Google Scholar 

  • Pitts, T.O., McGowan, J.A., Chen, T.C., Silverman, M., Rose, M.E., Puschett, J.B., 1988. Inhibitory effects of volume expansion performed in vivo on transport in the isolated rabbit proximal tubule perfused in vitro. J. Clin. Invest. 81, 997–1003.

    Article  Google Scholar 

  • Preisig, P.A., 1992. Luminal fbw rate regulates proximal tubule H–HCO3 transporters. Am. J. Physiol. 262, F47–F54.

    Google Scholar 

  • Romano, G., Favret, G., Damato, R., Bartoli, E., 1998. Proximal reabsorption with changing tubular fluid inflow in rat nephrons. Exp. Physiol. 83, 35–48.

    Google Scholar 

  • Schnermann, J., Wahl, M., Liebau, G., Fischbach, H., 1968. Balance between tubular fbw rate and net fluid reabsorption in the proximal convolution of the rat kidney. Pflugers Arch. 304, 90–103.

    Article  Google Scholar 

  • Schultz, S.G., 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”. Am. J. Physiol. 241, F579–F590.

    Google Scholar 

  • Schultz, S.G., 1992. Membrane cross-talk in sodium-absorbing epithelial cells. In: Seldin, D.W., Giebisch, G. (Eds.), The Kidney. Physiology and Pathophysiology, pp. 287–299. Raven, New York, Chap. 11.

    Google Scholar 

  • Schultz, S.G., Dubinsky, W.P., 2001. Sodium absorption, volume control and potassium channels: in tribute to a great biologist. J. Membr. Biol. 184, 255–261.

    Article  Google Scholar 

  • Sontag, E., 1998. Mathematical Control Theory. Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York, pp. 1–531.

    MATH  Google Scholar 

  • Walker, A.M., Bott, P.A., Oliver, J., MacDowell, M.C., 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134, 580–595.

    Google Scholar 

  • Weinstein, A.M., 1983. A non-equilibrium thermodynamic model of the rat proximal tubule epithelium. Biophys. J. 44, 153–170.

    Article  Google Scholar 

  • Weinstein, A.M., 1985. Glucose transport in a model of the rat proximal tubule epithelium. Math. Biosci. 76, 87–115.

    Article  MATH  Google Scholar 

  • Weinstein, A.M., 1990. Glomerulotubular balance in a mathematical model of the proximal nephron. Am. J. Physiol. 258, F612–F626.

    Google Scholar 

  • Weinstein, A.M., 1992. Chloride transport in a mathematical model of the rat proximal tubule. Am. J. Physiol. 263, F784–F798.

    Google Scholar 

  • Weinstein, A.M., 1994. Ammonia transport in a mathematical model of the rat proximal tubule. Am. J. Physiol. 267, F237–F248.

    Google Scholar 

  • Weinstein, A.M., 1995. A kinetically defined Na+/H+ antiporter within a mathematical model of the rat proximal tubule. J. Gen. Physiol. 105, 617–641.

    Article  Google Scholar 

  • Weinstein, A.M., 1996. Coupling of entry to exit by peritubular K+-permeability in a mathematical model of the rat proximal tubule. Am. J. Physiol. 271, F158–F168.

    Google Scholar 

  • Weinstein, A.M., 1999. Modeling epithelial cell homeostasis: Steady-state analysis. Bull. Math. Biol. 61, 1065–1091.

    Article  Google Scholar 

  • Weinstein, A.M., 2004. Modeling epithelial cell homeostasis: Assessing recovery and control mechanisms. Bull. Math. Biol. 66, 1201–1240.

    Article  MathSciNet  Google Scholar 

  • Weinstein, A.M., 2007. Sodium and chloride transport: Proximal nephron. In: Alpern, R.J., Hebert, S.C. (Eds.), Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, 4th edn. pp. 793–848. Elsevier, Amsterdam, Chap. 30.

    Google Scholar 

  • Weinstein, A.M., Weinbaum, S., Duan, Y., Du, Z., Yan, Q., Wong, T., 2007. Flow-dependent transport in a mathematical model of rat proximal tubule. Am. J. Physiol. 292, F1164–F1181.

    Google Scholar 

  • Wilcox, C.S., Baylis, C., 1985. Glomerular-tubular balance and proximal regulation. In: Seldin, D.W., Giebisch, G. (Eds.), The Kidney. Physiology and Pathophysiology, pp. 985–1012. Raven, New York.

    Google Scholar 

  • Wong, K.R., Berry, C.A., Cogan, M.G., 1995. Flow dependence of chloride transport in rat S1 proximal tubules. Am. J. Physiol. 269, F870–F875.

    Google Scholar 

  • Wonham, W.M., 1985. Linear Multivariable Control: A Geometric Approach. Springer, New York, pp. 1–334.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, A.M., Sontag, E.D. Modeling Proximal Tubule Cell Homeostasis: Tracking Changes in Luminal Flow. Bull. Math. Biol. 71, 1285–1322 (2009). https://doi.org/10.1007/s11538-009-9402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9402-1

Keywords

Navigation