Skip to main content

Advertisement

Log in

A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002. Molecular Biology of the Cell, 4th edn. Garland Science, New York.

    Google Scholar 

  • Anderson, A.R.A., 2005. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–86.

    Article  MATH  Google Scholar 

  • Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V., 2006. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–15.

    Article  Google Scholar 

  • Anderson, A.R.A., Rejniak, K.A., Gerlee, P., Quaranta, V., 2008. Microenvironment driven invasion: a multiscale multimodel investigation. J. Math. Biol., in print.

  • Ardens, M.J., Wyllie, A.H., 1991. Apoptosis: Mechanisms and roles in pathology. Int. Rev. Exp. Path. 32, 223–54.

    Google Scholar 

  • Bostwick, D.G., Amin, M.B., Dundore, P., Marsh, W., Schultz, D.S., 1993. Architectural patterns of high-grade prostatic intraepithelial neoplasia. Human Pathol. 24, 298–10.

    Article  Google Scholar 

  • Cancer Research UK, 2008 http://www.cancerresearchuk.org

  • Che, M., Grignon, D., 2002. Pathology of prostate cancer. Cancer Matastasis Rev. 21, 381–95.

    Article  Google Scholar 

  • Debnath, J., Brugge, J.S., 2005. Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–88.

    Article  Google Scholar 

  • Debnath, J., Mills, K.R., Collins, N.L., Reginato, M.J., Muthuswamy, S.K., Brugge, J.S., 2002. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–0.

    Article  Google Scholar 

  • Debnath, J., Walker, S.J., Brugge, J.S., 2003. Akt activation disrupts mammary acini architecture and enhances proliferation in an mTOR-dependent manner. J. Cell Biol. 163, 315–26.

    Article  Google Scholar 

  • Ferguson, D.J.P., 1985. Ultrastructural characterisation of the proliferative (stem?) cells within the parenchyma of the normal “resting” breast. Virchows Arch. [Pathol. Anat.] 407, 379–85.

    Article  Google Scholar 

  • Ferguson, D.J.P., 1988. An ultrastructural study of mitosis and cytokinesis in normal “resting” human breast. Cell Tissue Res. 252, 581–87.

    Article  Google Scholar 

  • Ferguson, D.J.P., Anderson, T.J., 1981. Ultrastructural observations on cell death by apoptosis in the “resting” human breast. Virchows Arch. [Pathol. Anat.] 393, 193–03.

    Article  Google Scholar 

  • Frisch, S.M., Screaton, R.A., 2001. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–62.

    Article  Google Scholar 

  • Gartner, L.P., Hiatt, J.L., Strum, J.M., Cell Biology and Histology, 5th edn. Lippincott Williams & Wilkins, (2007)

  • Gerlee, P., Anderson, A.R.A., 2007. An evolutionary hybrid cellular automaton model of solid tumour growth. J. Theor. Biol. 246(4), 583–03.

    Article  MathSciNet  Google Scholar 

  • Grossmann, J., 2002. Molecular mechanisms of “detachment-induced apoptosis-anoikis” Apoptosis 7, 247–60.

    Article  Google Scholar 

  • Hofmann, C., Obermeier, F., Artinger, M., Hausmann, M., Falk, W., Schoelmerich, J., Rogler, G., Grossmann, J., 2007. Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 132, 587–00.

    Article  Google Scholar 

  • Latorre, I.J., Roh, M.H., Frese, K.K., Weiss, R.S., Margolis, B., Javier, R.T., 2005. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J. Cell Sci. 118, 4283–293.

    Article  Google Scholar 

  • Mallon, E., Osin, P., Nasiri, N., Blain, I., Howard, B., Gusterson, B., 2000. The basic pathology of human breast cancer. J. Mammary Gland Biol. Neoplasia 5, 139–63.

    Article  Google Scholar 

  • Mills Shaw, K.R., Wrobel, C.N., Brugge, J.S., 2004. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J. Mammary Gland Biol. Neoplasia 9, 297–10.

    Article  Google Scholar 

  • Muschler, J., Levy, D., Boudreau, R., Henry, M., Campbell, K., Bissell, M.J., 2002. A role of Dystroglycan in epithelial polarization: loss of function in breast tumour cells. Cancer Res. 62, 7102–109.

    Google Scholar 

  • Muthuswamy, S.K., Li, D., Lelievre, S., Bissel, M.J., Brugge, J.S., 2001. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat. Cell Biol. 3, 785–92.

    Article  Google Scholar 

  • Nelson, W.J., 2003. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–74.

    Article  Google Scholar 

  • Nelson, C.M., Bissell, M.J., 2005. Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15, 342–52.

    Article  Google Scholar 

  • O’Brien, L.E., Zegers, M.M.P., Mostov, K.E., 2002. Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–37.

    Article  Google Scholar 

  • Ojakian, G.K., Nelson, W.J., Beck, K.A., 1997. Mechanisms for de novo biogenesis of an apical membrane compartment in groups of simple epithelial cells surrounded by extracellular matrix. J. Cell Sci. 110, 2781–794.

    Google Scholar 

  • Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 479–17.

    Article  MATH  MathSciNet  Google Scholar 

  • Petersen, O.W., Ronnov-Jessen, L., Howlett, A.R., Bissell, M.J., 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 89, 9064–068.

    Article  Google Scholar 

  • Rejniak, K.A., 2005. A single-cell approach in modeling the dynamics of tumor microregions. Math. Biosci. Eng. 2, 643–55.

    MATH  MathSciNet  Google Scholar 

  • Rejniak, K.A., 2007. An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol. 247, 186–04.

    Article  MathSciNet  Google Scholar 

  • Rejniak, K.A., Anderson, A.R.A., 2008. A computational study of the development of epithelial acini. I. Sufficient conditions for the formation of a hollow structure. Bull. Math. Biol. 70, 677–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Rejniak, K.A., Dillon, R.H., 2007. A single cell based model of the ductal tumor microarchitecture. Comput. Math. Methods Med. 8(1), 51–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Savagner, P., 2001. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 23, 912–23.

    Article  Google Scholar 

  • Shin, K., Straight, S., Margolis, B., 2005. PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J. Cell Biol. 168, 705–11.

    Article  Google Scholar 

  • Straight, S.W., Shin, K., Fogg, V.C., Fan, S., Liu, Ch.-J., Roh, M., Margolis, B., 2004. Loss of PALS1 expression leads to tight junction and polarity defects. Mol. Biol. Cell 15, 1981–990.

    Article  Google Scholar 

  • Tavassoli, F.A., 2001. Ductal intraepithelial neoplasia of the breast. Vichrows Arch. 438, 221–27.

    Article  Google Scholar 

  • Thiery, J.P., 2002. Epithelial-mesenchymal transition in tumours progression. Nat. Rev. Cancer 2, 442–47.

    Article  Google Scholar 

  • Vega-Salas, D.E., Salas, P.J.I., Gundersen, D., Rodriguez-Boulan, E., 1987. Formation of the apical pole of epithelial (Madin-Darby Canine Kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol. 104, 905–16.

    Article  Google Scholar 

  • Wang, A.Z., Ojakian, G.K., Nelson, W.J., 1990. Steps in the morphogenesis of a polarized epithelium I. Uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 137–51.

    Google Scholar 

  • Wang, S.E., Narasanna, A., Peres-Torres, M., Xiang, B., Wu, F.Y., Yang, S., Carpenter, G., Gazdar, A.F., Muthuswamy, S.K., Arteaga, C.L., 2006. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–8.

    Article  Google Scholar 

  • Weaver, V.M., Petersen, O.W., Wang, F., Larabell, C.A., Briand, P., Damsky, C., Bissell, M.J., 1997. J. Cell Biol. 137, 231–45.

    Article  Google Scholar 

  • Winchester, D.P., Jeske, J.M., Goldschmidt, R.A., 2000. The diagnosis and management of ductal carcinoma in situ of the breast. CA Cancer J. Clin. 50, 184–00.

    Article  Google Scholar 

  • Xian, W., Schwertfeger, K.L., Vargo-Gogola, T., Rosen, J.M., 2005. Pleitropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J. Cell Biol. 171, 663–73.

    Article  Google Scholar 

  • Yamaguchi, H., Wyckoff, J., Condeelis, J., 2005. Cell migration in tumours. Curr. Opin. Cell Biol. 17, 559–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Rejniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rejniak, K.A., Anderson, A.R.A. A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability. Bull. Math. Biol. 70, 1450–1479 (2008). https://doi.org/10.1007/s11538-008-9308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9308-3

Keywords

Navigation