Skip to main content
Log in

Expressions for the Fractional Modification in Different Monocyclic Enzyme Cascade Systems: Analysis of their Validity Tested by Numerical Integration

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper presents the derivation, under a minimal set of assumptions, of a general expression for the steady-state fractional modification of an interconvertible protein involved in four different schemes of monocyclic enzyme cascade systems. From this general expression we derive, as particular cases, other, simpler expressions by applying additional assumptions and which have, therefore, a smaller range of validity. Some of these particular expressions coincide with those already obtained in previous contributions on individualised analyses. We discuss the relationships between the kinetic parameters and the concentrations needed for the fulfilment of the additional assumptions. The goodness of the analysis was tested by reference to the shape in the steady-state of the simulated time progress curves obtained by numerical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerenza, L., 1993. Metabolic control design. J. Theor. Biol. 165, 63–85.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P.D., Krebs, E.G., 1986. Control by phosphorylation. In: The Enzymes, 3rd edition, vol. 17.

  • Bradley, M.K., Hudson, J., Villanueva, M.S., Livingston, D.M., 1984. Specific in vitro adenylylation of the simian virus-40 large tumor-antigen. Proc. Natn. Acad: Sci. U.S.A. 81, 6574–6578.

    Article  CAS  ADS  Google Scholar 

  • Burden, R., Faires, J., 1985. Numerical Analysis. PWS. Boston.

    MATH  Google Scholar 

  • Cárdenas, M.L., 2000. Coordination and homeostasis in the response to Multiple Signals: Role of metabolic cascades. In: Cornish-Bowden, A., Cárdenas, M.L. (Eds.), Technological and Medical Implicatios of Metabolic Control Analysis. Kluwer Academic Publishers, Dordrecht, pp. 289–298.

    Google Scholar 

  • Cárdenas, M.L., Cornish-Bowden, A., 1989. Characteristics necessary for an interconvertible enzyme cascade to give a highly sensitive response to an effector. Biochem. J. 257, 339–345.

    PubMed  Google Scholar 

  • Cárdenas, M.L., Cornish-Bowden, A., 1990. Properties needed for the enzymes of an interconvertible cascade to generate a highly sensitive response. In: Cornish-Bowden, A., Cárdenas, M.L. (Eds.), Control of Metabolic Processes. Plenum Press, New York, pp. 195–207.

    Google Scholar 

  • Cárdenas, M.L., Goldbeter, A., 1996. The glucose-induced switch between glycogen phosphorylase and glycogen synthase in the liver: Outlines of a theoretical aproach. J. Theor. Biol. 182, 421–426.

    Article  PubMed  Google Scholar 

  • Chock, P.B., Stadtman, E.R., 1980. Covalently interconvertible enzyme cascade systems. Methods Enzymol. 64, 297–325.

    Article  CAS  Google Scholar 

  • Chock, P.B., Rhee, S.G., Stadtman, E.R., 1980. Interconvertible enzyme cascades in cellular regulation. Annu. Rev. Biochem. 49, 813–843.

    Article  PubMed  CAS  Google Scholar 

  • Chock, P.B., Rhee, S.G., Stadtman, E.R., 1990. Metabolic control by cyclic cascades mechanism: a study of E. coli glutamine synthetase. In: Cornish-Bowden, A., Cárdenas, M.L. (Eds.), Control of Metabolic Processes. Plenum Press, New York, pp. 183–194.

    Google Scholar 

  • Cohen, P., 1982. The role of protein phosphorylation in neuronal and hormonal control of cellular activity. Nature 296, 613–620.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Cooper, J.A., Sefton, B.M., Hunter, T., 1983. Detection and quantification of phosphotyrosine in proteins. In: Methods in Enzymology, Vol. 99. Academic Press, New York, pp. 387–402.

    Google Scholar 

  • Cornish-Bowden, A., 1995. Fundamentals of Enzyme Kinetics, revised edition. Portland Press, London.

    Google Scholar 

  • Cornish-Bowden, A., Szedlacsek, S.E., 1990. Very large response corfficints in interconvertible enzyme cascades. Biomed. Biochim. 49, 829–837.

    CAS  Google Scholar 

  • Eigen, E., Schuster, P., 1979. The Hyperciclus. A Principle of Natural Self-Organization. Springer, Heidelberg.

    Google Scholar 

  • Fehlberg, E., 1970. Classische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schcrittweiten-Kontrolle und ihre Anvendung auf Wärmeleitungs-probleme. Computing, 6, 61–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Flavin, M., Murofushi, H., 1984. Tyrosine incorporation in tubulin. In: Methods in Enzymology, Vol. 106. Academic Press, New York, pp. 223–237.

    Google Scholar 

  • García-Sevilla, F., Garrido del Solo, C., Duggleby, R.G., García-Cánovas, F., Peyró, R., Varón-Castellanos, R., 2000. Use of a windows program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalysed reactions. BioSystems 54, 151–164.

    Article  PubMed  Google Scholar 

  • Goldbeter, A., Koshland, D.E., Jr., 1981. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844.

    Article  PubMed  CAS  MathSciNet  ADS  Google Scholar 

  • Goldbeter, A., Koshland, D.E., Jr., 1982. Sensitivity amplification in biochemical systems, Q. Rev. Biophys. 15, 555–591.

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter, A., Koshland, D.E., Jr., 1984. Ultrasensitivity in biochemical systems controlled by covalent modification: Interplay between zero-order and multistep effects. J. Biol. Chem. 259, 14441–14447.

    PubMed  CAS  Google Scholar 

  • Goldbeter, A., Koshland, D.E., Jr., 1987. Energy expenditure in the control of biochemical systems by covalent modification. J. Biol. Chem. 262, 4460–4471.

    PubMed  CAS  Google Scholar 

  • Goldbeter, A., Koshland, D.E., Jr., 1990. Zero-order ultrasensitivity in interconvertible emzyme systems. In: Cornish-Bowden, A., Cárdenas, M.L. (Eds.), Control of Metabolic Processes. Plenum Press, New York, pp. 173–182.

    Google Scholar 

  • Hanashiro, I., Roach, P.J., 2002. Mutations of muscle glycogen synthase that disable activation by glucose 6-phosphate. Arch. Biochem. Biophys. 397, 286–292

    Article  PubMed  CAS  Google Scholar 

  • Iyengar, R., Birbaumer, L., 1989. G. Proteins. Academic Press, New York.

    Google Scholar 

  • Krebs, H.A., Beavo, J.A., 1979. Phosphorilation-dephosphorilation of enzymes. Ann. Rev. Biochem., 48, 923–959.

    Article  PubMed  CAS  Google Scholar 

  • Marx, J.L., 1989. Phosphoproteins: Protein kinases. Science, 245, 252–255.

    PubMed  CAS  ADS  Google Scholar 

  • Mller-Eberhard, H.J., 1988. Molecular organization and function of the complement systems. A. Rev. Biochem. 57, 321–347.

    Article  Google Scholar 

  • Mutalik, V.K., Aditya, P.S., Edwards, J.S., Venkatesh, K.V., 2004. Robust global sensitivity in multiple enzyme cascade system explains how the downstream cascade structure may remain unaffected by cross-talk. FEBS Letters 558, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Mutalik, V.K., Shah, P., Venkatesh, K.V., 2003. Allosteric interactions and bifunctionality make the response of glutamine synthetase cascade system of Escherichia coli robust and ultrasensitive. J. Biol. Chem. 278, 26327–26332.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, F., Acerenza, L., 1998. Optimal metabolic control design. J. Theor. Biol. 191, 439–449.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, F., Acerenza, L., 2002. Elasticity analys and design for large metabolic responses produced by changes in enzyme activities. Biochem. J. 367, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, F. Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., 2002a. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction. Proc. Nat. Sci. U.S.A 99, 1170–1175.

    Article  CAS  ADS  Google Scholar 

  • Ortega, F., Ehrenberg, M., Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., 2002b. Sensitivity analysis of metabolic cascades catalyzed by bifunctional enzymes. Mol. Biol. Rep. 29, 211–215.

    Article  CAS  Google Scholar 

  • Patnaik, P.A., 1995. Uniqueness and multiplicity of steady states in monocyclic enzyme cascades: A graph-theoretic analysis. J. Theor. Biol. 177, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S.G., Chock, P.B., Stadtman, E.R., 1989. Regulation of Escherichia coli glutamine synthetase. In: Meister, A. (Ed.), Advances in Enzymology, Vol. 62. Wiley & Sons, New York, pp. 37–92.

    Google Scholar 

  • Sauro, H.M., 2004. The computational versatility of proteomic signaling networks. Current Proteomics 1, 67–81.

    Article  CAS  Google Scholar 

  • Schafer, J.R.A., Fell, D.A., Rothman, D., Shulman, R.G., 2004. Protein phosphorylation can regulate metabolite concentrations rather than control flux: The example of glycogen synthase. Proc. Nat. Acad. Sci. U.S.A 101, 1485–1490.

    Article  CAS  ADS  Google Scholar 

  • Shacter, E., Chock, P.B., Rhee, S.G., Stadtman, E.R., 1986. The Enzymes. Academic Press, New York, vol. XVII, pp. 21–42.

    Google Scholar 

  • Shacter, E., Chock, P.B., Stadtman, E.R., 1984. Regulation through phosphorylation/dephosphorylation cascade systems. J. Biol. Chem. 259, 12252–12259.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R., 2001. The story of glutamine synthetase regulation. J. Biol. Chem. 276, 44357–44364.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, E.R., Chock, P.B., 1977. Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proc. Nat. Acad. Sci. U.S.A. 74, 2761–2766.

    Article  CAS  ADS  Google Scholar 

  • Stadtman, E.R., Chock, P.B., 1979. Advantages of enzyme cascades in the regulation of key metabolic processes. In: Schmidtt, F.O. (Ed.), The Neurosciences Fourth Study Program. M.I.T. Press, Cambridge, pp. 801–817.

    Google Scholar 

  • Szedlacsek, S.E., Cárdenas, M.L., Cornish-Bowden, A., 1992. Response coefficients of interconvertible enzyme cascades towards effectors that act on one or both modifier enzymes. Eur. J. Biochem. 204, 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Topham, C.M., 1990. A generalizesed theoretical treatment of the kinetics of an enzyme- catalyzed reaction in the presence of an unstable irreversible modifier. J. Theor. Biol. 145, 547–572.

    Article  PubMed  CAS  Google Scholar 

  • Varón, R., Havsteen, B.H., 1990. Kinetics of the transient phase and steady-state of the monocyclic enzyme cascades. J. Theor. Biol. 144, 397–413.

    PubMed  Google Scholar 

  • Varón, R., Havsteen, B.H., García-Moreno, M., Valero, E. Molina-Alarcón, García-Cánovas, F., 1993. Time course of the uridylilation and adenylylilation states in the glutamine synthetase bicyclic cascades. Biochem. J. 294, 813–819.

    Google Scholar 

  • Varón, R., Havsteen, B.H., Molina-Alarcón, M., Szedlasek, S.E., García-Moreno, M., García-Cánovas, F., 1994a. Kinetic analysis of reversible closed bicyclic enzyme cascades covering the whole course of the reaction. Int. J. Biochem. 26, 787–779

    Article  Google Scholar 

  • Varón, R., Molina-Alarcón, M., García-Moreno, M., García-Sevilla, F., Valero, E., 1994b. Kinetic analysis of the opened bicyclic enzyme cascades. Biol. Chem. Hoppe Seyler 375, 365–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Varón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varón, R., Valero, E., Molina-Alarcón, M. et al. Expressions for the Fractional Modification in Different Monocyclic Enzyme Cascade Systems: Analysis of their Validity Tested by Numerical Integration. Bull. Math. Biol. 68, 1461–1493 (2006). https://doi.org/10.1007/s11538-005-9010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9010-7

Keywords

Navigation