Skip to main content
Log in

Electronic structures of the oxygenated diamond (100) surfaces

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

By means of first principles method on the basis of density functional theory (DFT), the equilibrium geometries and density of states (DOS) of the two oxygenated diamond (100) surfaces, bridging model and on-top model are calculated. The results indicate that there are no surface states located in the band gap of the bridging model of oxygenated diamond (100) surface, and the occupied surface states in the valence band are attributed to the non-bonded O 2p orbital, O 2p and C 2p bonding orbitals, and C 2p and H 1s bonding orbitals. By contrast, for the on-top model of oxygenated diamond (100) surface, the unoccupied surface states exist in the band gap, which originate from non-bonded C 2p and O 2p orbitals. In addition, the occupied surface states in the valence band are induced by non-bonded O 2p orbital and the C=O π bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalish R, Reznik A, Uzan-Saguy C, et al. Is sulfer a donor in diamond? Appl Phys Lett, 2000, 76(6): 757–759

    Article  Google Scholar 

  2. Rezek B, Nebel C E. Kelvin force microscopy on diamond surfaces and devices. Diamond Rel Mater, 2005, 14(3–7): 466–469

    Article  Google Scholar 

  3. Saito T, Park K, Hirama K, et al. Fabrication of diamond MISFET with micron-sized gate length on boron-doped (111) surface. Diamond Rel Mater, 2005, 14(11–12): 2043–2046

    Article  Google Scholar 

  4. Wolter S D, Stoner B R, Glass J T, et al. Textured growth of diamond on silicon via in situ carburization and bias-enhanced nucleation. Appl Phys Lett, 1993, 62(11): 1215–1217

    Article  Google Scholar 

  5. Chu C J, D’Evelyn M P, Hauge R H, et al. Mechanism of diamond growth by chemical vapor deposition on diamond (100), (111), and (110) surfaces: Carbon-13 studies. J Appl Phys, 1991, 70(3): 1695–1705

    Article  Google Scholar 

  6. Hamza A V, Kubiak G D, Stulen R H. Hydrogen chemisorption and the structure of the diamond C(100)-2×1 surface. Surf Sci, 1990, 237(1–3): 35–52

    Article  Google Scholar 

  7. Phersson P E, Mercer T W. Oxidation of the hydrogenated diamond (100) surface. Surf Sci, 2000, 460(1–3): 49–66

    Article  Google Scholar 

  8. Hayashi K, Yamanaka S, Watanabe H, et al. Investigation of the effect of hydrogen on electronical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J Appl Phys, 1997, 81(2): 744–753

    Article  Google Scholar 

  9. Yagi L, Notsu H, Kondo T, et al. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J Electroanal Chem, 1999, 473(1–2): 173–178

    Article  Google Scholar 

  10. Rutter M J, Robertson J. Ab initio calculation of electron affinities of diamond surfaces. Phys Rev B, 1998, 57(15): 9241–9245

    Article  Google Scholar 

  11. Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys Rev B, 2001, 64(16): 165411-1–165411-7

    Article  Google Scholar 

  12. Yamanaka S, Ishikawa K, Mizuochi N, et al. Structural change in diamond by hydrogen plasma treatment at room temperature. Diamond Rel Mater, 2005, 14(11–12): 1939–1942

    Google Scholar 

  13. Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett, 2000, 85(16): 3472–3475

    Article  Google Scholar 

  14. Nebel C E, Rezek B, Shin D, et al. Electronic properties of H-terminated diamond in electrolyte solutions. J Appl Phys, 2006, 99(3): 033711-1–033711-4

    Article  Google Scholar 

  15. Furthmüller J, Hafner J, Kresse G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Phys Rev B, 1996, 53(11): 7334–7351

    Article  Google Scholar 

  16. Davidson B N, Pickett W E. Tight-binding study of hydrogen on the C(111), C(100), and C(110) diamond surfaces. Phys Rev B, 1994, 49(16): 11253–11267

    Article  Google Scholar 

  17. Dai Y, Yan C X, Li A Y, et al. Effects of hydrogen on electronic properties of doped diamond. Carbon, 2005, 43(5): 1009–1014

    Article  Google Scholar 

  18. Yu Y, Gu C Z, Xu L F, et al. Ab initio structural characterization of a hydrogen-covered diamond (001) surface. Phys Rev B, 2004, 70(12): 125423-1–125423-6

    Google Scholar 

  19. Takeuchi D, Ri S-G, Kato H, et al. Total photoyield experiments on hydrogen terminated n-type diamond. Diamond Rel Mater, 2005, 14(11–12): 2019–2022

    Article  Google Scholar 

  20. Ripalda J M, Gale J D, Jones T S, et al. Hydrogen-bridge bonding on semiconductor surfaces: Density-functional calculations. Phys Rev B, 2004, 70(24): 245314-1–245314-4

    Article  Google Scholar 

  21. Hoffman A, Lafosse A, Azria R. Sub-bandgap photoenhancement of electron emission and discharging of hydrogenated and hydrogen-free diamond surfaces. Phys Rev B, 2006, 73(8): 085423-1–085423-6

    Article  Google Scholar 

  22. Hossain M Z, Kubo T, Aruga T, et al. Chemisorbed states of atomic oxygen and its replacement by atomic hydrogen on the diamond (100)-(2×1) surface. Surf Sci, 1999, 436(1–3): 63–71

    Article  Google Scholar 

  23. Pehrsson P E, Mercer T W. Oxidation of heated diamond C(100):H surfaces. Surf Sci, 2000, 460(1–3): 74–90

    Article  Google Scholar 

  24. Sque S J, Jones R, Briddon P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys Rev B, 2006, 73(8): 085313-1–085313-14

    Article  Google Scholar 

  25. Loh K P, Xie X N, Lim Y H, et al. Surface oxygenation studies on (100)-oriented diamond using an atom beam source and local anodic oxidation. Surf Sci, 2002, 505: 93–114

    Article  Google Scholar 

  26. Teter M P, Payne M C, Allan D C. Solution of schrödinger’s equation for large systems. Phys Rev B, 1989, 40(18): 12255–12263

    Article  Google Scholar 

  27. Tamura H, Zhou H, Sugisako K, et al. Periodic density-functional study on oxidation of diamond (100) surfaces. Phys Rev B, 2000, 61(16): 11025–11033

    Article  Google Scholar 

  28. Su C, Lin J-C. Thermal desorption of hydrogen from the diamond C(100) surface. Surf Sci, 1998, 406(1–3): 149–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Darong.

About this article

Cite this article

Liu, F., Wang, J., Liu, B. et al. Electronic structures of the oxygenated diamond (100) surfaces. CHINESE SCI BULL 51, 2437–2443 (2006). https://doi.org/10.1007/s11434-006-2139-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2139-4

Keywords

Navigation