Skip to main content

Advertisement

Log in

Different chemical composition and storage mechanism of soil organic matter between active and permafrost layers on the Qinghai–Tibetan Plateau

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Although many studies have paid attention to the storage and dynamics of organic carbon (OC) in the Arctic permafrost, there are limited reports for low-latitude alpine permafrost ecosystems like Qinghai–Tibet Plateau (QTP). The aims of this study are to (1) reveal the vertical distribution of OC stocks in permafrost soils; (2) assess the storage and transformation of permafrost OC; and (3) disentangle the effect of mineral protection on OC storage in permafrost soils.

Materials and methods

A 2-m permafrost profile on the QTP was investigated to understand vertical distribution of organic matter (OM) in different density fractions based on elemental composition, carbon stable isotope (δ13C), mineral grain size, Fe and Al concentrations, and solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR).

Results and discussion

A positive relationship between light fraction organic carbon (LOC) and root abundance indicates that root is an important contributor for LOC. However, in heavy fractions, the total organic carbon to total nitrogen ratio (TOC/TN) is significantly lower than that in light fractions. This, combined with a negative correlation between TOC/TN and heavy fraction organic carbon (HOC), indicates that microbial input affects the quantity of HOC. In the active layer, the downward decreased δ13C, elevated alkyl/O-alkyl, and decreased ratio of 70–75:52–57 ppm suggest selected decomposition of carbohydrate components. While in the deep permafrost layer, the relatively constant δ13C values and chemical composition of OM suggest a stable environment and minor impact of cryoturbation. The redundancy analysis shows that soil textures and concentration of Fe and Al have weak correlations with OC content, but for deep permafrost soils only, fine soil fraction is associated with aromatic carbon, and Al has strong influence on alkyl carbon, which could be attributed to OM-mineral stabilization.

Conclusions

Our results suggest that soil textures and Fe and Al concentration affect SOM preservation in the permafrost soils on the QTP; however, they largely control the quality rather than quantity of OM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ågren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126

    Google Scholar 

  • Alewell C, Giesler R, Klaminder J, Leifeld J, Rollog M (2011) Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8:1769–1778

    CAS  Google Scholar 

  • Asano M, Wagai R (2015) Distinctive organic matter pools among particle-size fractions detected by solid-state 13C-NMR, δ13C and δ15N analyses only after strong dispersion in an allophanic Andisol. Soil Sci Plant Nutr 61:242–248

    CAS  Google Scholar 

  • Baldock JA, Oades JM, Vassallo AM, Wilson MA (1990) Significance of microbial activity in soils as demonstrated by solid-state 13C NMR. Environ Sci Technol 24:527–530

    CAS  Google Scholar 

  • Bockheim JG, Munroe JS (2014) Organic carbon pools and genesis of alpine soils with permafrost: a review. Arct Antarct Alp Res 46:987–1006

    Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state C-13 NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol Biochem 56:40–48

    CAS  Google Scholar 

  • Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65:491–499

    CAS  Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955

    Google Scholar 

  • Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 7. https://doi.org/10.1038/ncomms13046

  • Chen Y-L, Deng Y, Ding J-Z, Hu H-W, Xu T-L, Li F, Yang G-B, Yang Y-H (2017) Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol Ecol 26:6608–6620

    CAS  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    CAS  Google Scholar 

  • Cory RM, Crump BC, Dobkowski JA, Kling GW (2013) Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc Natl Acad Sci U S A 110:3429–3434

    CAS  Google Scholar 

  • Dam DV, Breemen NV, Veldkamp E (1997) Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39:343–375

    Google Scholar 

  • Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob Chang Biol 22:2688–2701

    Google Scholar 

  • Garten CT, Cooper LW, Post WM, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the southern Appalachian mountains. Ecology 81:1108–1119

    Google Scholar 

  • Gentsch N, Wild B, Mikutta R, Capek P, Diakova K, Schrumpf M, Turner S, Minnich C, Schaarschmidt F, Shibistova O, Schnecker J, Urich T, Gittel A, Santruckova H, Barta J, Lashchinskiy N, Fuss R, Richter A, Guggenberger G (2018) Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob Chang Biol 24:3401–3415

    Google Scholar 

  • Grewer DM, Lafreniere MJ, Lamoureux SF, Simpson MJ (2016) Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochemistry 128:397–415

    CAS  Google Scholar 

  • Gu B, Schmitt J, Chen Z, Liang L, Mccarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28:38–46

    CAS  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    CAS  Google Scholar 

  • Herndon E, AlBashaireh A, Singer D, Chowdhury TR, Gu BH, Graham D (2017) Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil. Geochim Cosmochim Acta 207:210–231

    CAS  Google Scholar 

  • Herold N, Schoening I, Michalzik B, Trumbore S, Schrumpf M (2014) Controls on soil carbon storage and turnover in German landscapes. Biogeochemistry 119:435–451

    CAS  Google Scholar 

  • Höfle S, Rethemeyer J, Mueller CW, John S (2013) Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta. Biogeosciences 10:3145–3158

    Google Scholar 

  • Hu W, Qi Z, Tian T, Li D, Gang C, Jing M, Wu Q, Niu F, An L, Feng H (2016) Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau. Extremophiles 20:337–349

    CAS  Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Google Scholar 

  • Jansson JK, Tas N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425

    CAS  Google Scholar 

  • Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townleysmith L (1992) Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J 56:1799–1806

    Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676

    CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia 106:507–515

    Google Scholar 

  • Kaiser K, Mikutta R, Guggenberger G (2007) Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Sci Soc Am J 71:711–719

    CAS  Google Scholar 

  • Karine L, Alfonso M, Alexandre O, Yves G (2012) Preservation of organic matter in sediments promoted by iron. Nature 483:198–200

    Google Scholar 

  • Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625

    Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci U S A 108:14769–14774

    CAS  Google Scholar 

  • Liu WJ, Chen SY, Qin X, Baumann F, Scholten T, Zhou ZY, Sun WJ, Zhang TZ, Ren JW, Qin DH (2012) Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ Res Lett 7. https://doi.org/10.1088/1748-9326/1087/1083/035401

  • Luan J, Cui L, Xiang C, Wu J, Song H, Ma Q (2014) Soil carbon stocks and quality across intact and degraded alpine wetlands in Zoige, East Qinghai-Tibet Plateau. Wetl Ecol Manag 22:427–438

    CAS  Google Scholar 

  • MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci 5:719–721

    CAS  Google Scholar 

  • Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    CAS  Google Scholar 

  • Mann PJ, Eglinton TI, McIntyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RG (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun 6:7856. https://doi.org/10.1038/ncomms8856

    Article  CAS  Google Scholar 

  • McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo LD, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555

    Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    CAS  Google Scholar 

  • Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56

    CAS  Google Scholar 

  • Mu CC, Zhang TJ, Zhao Q, Guo H, Zhong W, Su H, Wu QB (2016) Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau. Geophys Res Lett 43:10,286–10,294. https://doi.org/10.1002/2016gl070071

    Article  Google Scholar 

  • Mu C, Li L, Wu X, Zhang F, Jia L, Zhao Q, Zhang T (2018) Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Sci Rep 8:4205. https://doi.org/10.1038/s41598-41018-22530-41593

    Article  Google Scholar 

  • Mueller CW, Rethemeyer J, Kao-Kniffin J, Löppmann S, Hinkel KM, Bockheim G (2015) Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob Chang Biol 21:2804–2817

    Google Scholar 

  • Nelson PN, Baldock JA (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 72:1–34

    CAS  Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    CAS  Google Scholar 

  • Palmtag J, Kuhry P (2018) Grain size controls on cryoturbation and soil organic carbon density in permafrost-affected soils. Permafr Periglac Process 29:112–120

    Google Scholar 

  • Pautler BG, Simpson AJ, Mcnally DJ, Lamoureux SF, Simpson MJ (2010) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44:4076–4082

    CAS  Google Scholar 

  • Pedersen JA, Simpson MA, Bockheim JG, Kumar K (2011) Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Org Geochem 42:947–954

    CAS  Google Scholar 

  • Pengerud A, Dignac MF, Certini G, Strand LT, Forte C, Rasse DP (2017) Soil organic matter molecular composition and state of decomposition in three locations of the European Arctic. Biogeochemistry 135:277–292

    CAS  Google Scholar 

  • Poage MA, Feng X (2004) A theoretical analysis of steady state δ13C profiles of soil organic matter. Glob Biogeochem Cycles 18. https://doi.org/10.1029/2003GB002195

    Google Scholar 

  • Poirier N, Sohi SP, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189

    CAS  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454:393–396

    CAS  Google Scholar 

  • Roscoe R, Buurman P, Velthorst EJ, Vasconcellos CA (2001) Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado’s oxisol. Geoderma 104:185–202

    CAS  Google Scholar 

  • Rumpel C, Kogel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic, carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    CAS  Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Koegel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691

    CAS  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714

    Google Scholar 

  • Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    CAS  Google Scholar 

  • Sjögersten S, Turner BL, Mahieu N, Condron LM, Wookey PA (2003) Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob Chang Biol 9:759–772

    Google Scholar 

  • Sjögersten S, Caul S, Daniell TJ, Jurd APS, O'Sullivan OS, Stapleton CS, Titman JJ (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53

    Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell BA, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324

    CAS  Google Scholar 

  • Spencer RGM, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins A (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42:2830–2835

    Google Scholar 

  • Tans PP, Dejong AFM, Mook WG (1979) Natural atmospheric C-14 variation and the Suess effect. Nature 280:826–827

    CAS  Google Scholar 

  • Wang C, Wei H, Liu D, Luo W, Hou J, Cheng W, Han X, Bai E (2017a) Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant Soil 417:43–52

    CAS  Google Scholar 

  • Wang YY, Wang H, He JS, Feng XJ (2017b) Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat Commun 8. https://doi.org/10.1038/ncomms15972

  • Wang C, Houlton BZ, Liu D, Hou J, Cheng W, Bai E (2018) Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 15:1–16

    Google Scholar 

  • Wang X, Jelinski NA, Toner B, Yoo K (2019) Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals. Sci Total Environ 648:1500–1510

    CAS  Google Scholar 

  • Wu TH, Zhao L, Li R, Wang QX, Xie CW, Pang QQ (2013) Recent ground surface warming and its effects on permafrost on the Central Qinghai-Tibet Plateau. Int J Climatol 33:920–930

    Google Scholar 

  • Wu WC, Ruan JP, Ding S, Zhao L, Xu YP, Yang H, Ding WH, Pei YD (2014) Source and distribution of glycerol dialkyl glycerol tetraethers along lower Yellow River-estuary-coast transect. Mar Chem 158:17–26

    CAS  Google Scholar 

  • Wu XD, Zhao L, Hu GJ, Liu GM, Li WP, Ding YJ (2018) Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan Plateau. Sci Total Environ 613:1165–1174

    Google Scholar 

  • Xu CH, Guo LD, Ping CL, White DM (2009) Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska. J Geophys Res Biogeosci 114. https://doi.org/10.1029/2008jg000846

  • Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu BA (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599

    Google Scholar 

  • Yang G, Peng Y, Olefeldt D, Chen Y, Wang G, Li F, Zhang D, Wang J, Yu J, Liu L, Qin S, Sun T, Yang Y (2018) Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau. Environ Sci Technol 52:1244–1252

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Basic Research Program of China (no. 2014CB954001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Xu.

Additional information

Responsible editor: Yongfu Li

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, Y., Wei, D. et al. Different chemical composition and storage mechanism of soil organic matter between active and permafrost layers on the Qinghai–Tibetan Plateau. J Soils Sediments 20, 653–664 (2020). https://doi.org/10.1007/s11368-019-02462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02462-9

Keywords

Navigation