Skip to main content

Advertisement

Log in

In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO3)2, As2O3, CuSO4, NaCl, and CdCl2) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28g μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO3)2 > sucrose > NaCl > As2O3 > casein hydrolysate > CdCl2 > chitosan > proline > yeast extract > CuSO4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC50 and LC90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine in the callus culture of H. antidysenterica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18. https://doi.org/10.3390/agronomy7010018

    Article  Google Scholar 

  • AhbiRami R, Zuharah WF, Thiagaletchumi M, Subramaniam S, Sundarasekar J (2014) Larvicidal efficacy of different plant parts of railway creeper, Ipomoea cairica extract against dengue vector mosquitoes, Aedes albopictus (Diptera: Culicidae) and Aedes aegypti (Diptera: Culicidae). Int J Insect Sci 1:14

    Google Scholar 

  • Anjum NA, Duarte AC, Pereira E, Ahmad I (2015) Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues. Environ Sci Pollut Res 22:223–2246

    Article  Google Scholar 

  • Bakshi GDN, Sensarma P, Pal DC (2001) A lexicon of medicinal plants in India. Naya Prokash Publishers, Calcutta, pp 356–358

    Google Scholar 

  • Benelli G (2015a) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212. https://doi.org/10.1007/s00436-015-4656-z

    Article  Google Scholar 

  • Benelli G (2015b) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805. https://doi.org/10.1007/s00436-015-4586-9

    Article  Google Scholar 

  • Benelli G (2016) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68. https://doi.org/10.1016/j.enzmictec.2016.08.022

    Article  CAS  Google Scholar 

  • Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR (2017) Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. Environ Sci Pollut Res 0:1–23

    Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754. https://doi.org/10.1007/s00436-016-4971-z

    Article  Google Scholar 

  • Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115(7):2545–2560. https://doi.org/10.1007/s00436-016-5095-1

    Article  Google Scholar 

  • Berg J, John T, Stryer LLS (2001) Biochemistry. WH Freeman, New York, pp 1–900

    Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60(1):379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346

    Article  CAS  Google Scholar 

  • Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59:113–118

    CAS  Google Scholar 

  • Brachet J, Cosson L (1986) Changes in the total alkaloid content of Datura innoxia Mill. subjected to salt stress. J Exp Bot 37(5):650–666. https://doi.org/10.1093/jxb/37.5.650

    Article  CAS  Google Scholar 

  • Campbell FL, Sullivan WW, Smith LN (1993) The relative toxicity of nicotine, anabasine, methyl anabasine and lupine for Culicine mosquito larvae. J Econ Entomol 26:500–509

    Article  Google Scholar 

  • Cha XQ, Luo JP (2004) Nutrient requirement for growth and polysaccharide accumulation in liquid cultures of protocorm-like bodies of Dendrobium huoshanene. J Hefei Univ Technol 27:53–57

    Google Scholar 

  • Chetri SK, Kapoor H, Agrawal V (2016) Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis. Plant Cell Tissue Organ Cult 124(2):431–446. https://doi.org/10.1007/s11240-015-0905-1

    Article  CAS  Google Scholar 

  • Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32(1):91–101. https://doi.org/10.1007/s11738-009-0384-2

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Docimo T, Davis AJ, Luck K, Fellenberg C, Reichelt M, Phillips M, Gershenzon J, Auria JCD (2015) Influence of medium and elicitors on the production of cocaine, amino acids and phytohormones by Erythroxylum coca calli. Plant Cell Tissue Organ Cult 120(3):1061–1075. https://doi.org/10.1007/s11240-014-0660-8

    Article  CAS  Google Scholar 

  • Droillard MJ, Thibivilliers S, Cazale AC, Barbier BH, Lauriere C (2000) Protein kinases induced by osmotic stresses and elicitor molecules in tobacco cell suspensions: two crossroad MAP kinases and one osmoregulation-specific protein kinase. FEBS Lett 474(2–3):217–222. https://doi.org/10.1016/S0014-5793(00)01611-2

    Article  CAS  Google Scholar 

  • Dua VK, Verma G, Singh B, Rajan A, Bagai U, Agarwal DD, Gupta NC, Kumar S, Rastogi A (2013) Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena antidysenterica. Malar J 12(1):194. https://doi.org/10.1186/1475-2875-12-194

    Article  CAS  Google Scholar 

  • Dymock W, Warden CJH, Hooper D (1980) Pharmacographia Indica, The Institute of Health and Tibbi Research, vol 2, (republished under the auspices of Hamdard National Foundation of Pakistan), pp 391–398

  • Ellis DI, Harrigan GG, Goodacre R (2003) Metabolic fingerprinting with Fourier-transform infrared spectroscopy. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic, Dordrecht, pp 111–124. https://doi.org/10.1007/978-1-4615-0333-0_7

    Chapter  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci 88(19):8831–8834. https://doi.org/10.1073/pnas.88.19.8831

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  • François G, Van Looveren M, Timperman G, Chimanuka B, AkéAssi L, Holenz J, Bringmann G (1996) Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi. J Ethnopharmacol 54(2-3):125–130

    Article  Google Scholar 

  • Gao X, Cox KL Jr, He P (2014) Functions of calcium-dependent protein kinases in plant innate immunity. Plants 3(1):160–176. https://doi.org/10.3390/plants3010160

    Article  Google Scholar 

  • Gaur RD (1999) Flora of the District Garhwal of north west Himalaya. TransMedia, Srinagar

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Benelli G (2016a) Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: an eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf 129:85–90. https://doi.org/10.1016/j.ecoenv.2016.03.007

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016b) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115(2):807–815. https://doi.org/10.1007/s00436-015-4809-0

    Article  Google Scholar 

  • Hamid N, Bukhari N, Jawaid F (2010) Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak J Bot 42:239–246

    CAS  Google Scholar 

  • Hartzell A, Wilcoxon F (1941) A survey of plant products for insecticidal properties. Contr Boyce Thompson Inst 12:127–141

    CAS  Google Scholar 

  • Heble MR (1985) Multiple shoot cultures: a viable alternative in vitro system for the production of known new biologically active plant constituents. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, p 377. https://doi.org/10.1007/978-3-642-70717-9_27

    Google Scholar 

  • Karppinen K, Hokkanen J, Tolonen A, Maltila S, Hohtola A (2007) Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry 68(7):1038–1045. https://doi.org/10.1016/j.phytochem.2007.01.001

    Article  CAS  Google Scholar 

  • Kaur AD, Ravichandran V, Jain PK, Agrawal RK (2008) High-performance thin layer chromatography method for estimation of conessine in herbal extract and pharmaceutical dosage formulations. J Pharm Biomed Anal 46(2):391–394. https://doi.org/10.1016/j.jpba.2007.10.001

    Article  CAS  Google Scholar 

  • Kayser O, Quax WJ (2007) Medicinal plant biotechnology: from basic research to industrial applications. Wiley-Blackwell, Weinheim, pp 187–199

    Google Scholar 

  • Khan S, Rahman L (2017) Pathway modulation of medicinal and aromatic plants through metabolic engineering using Agrobacterium tumefaciens. In: Jha S (ed) Transgenesis and secondary metabolism. Springer, Dordrecht, pp 431–462

    Chapter  Google Scholar 

  • Kumar D, Datta S, Roy SS, Gaonkar RH, Vedseromani JR, Ghosh R, Pal BC (2013) Bioactive guided isolation and quantification of anti-diabetic principle in Holarrhena antidysenterica L. J Herbs Spices Med Plants 19(1):54–65. https://doi.org/10.1080/10496475.2012.737894

    Article  CAS  Google Scholar 

  • Kumar N, Singh B, Bhandari P, Gupta AP, Kaul VK (2007) Steroidal alkaloids from Holarrhena antidysenterica (L.) Wall. Chem Pharm Bull 55(6):912–916. https://doi.org/10.1248/cpb.55.912

    Article  CAS  Google Scholar 

  • Kuo CL, Chang JY, Chang HC, Gupta SK, Chan HS, Chen ECF, Tsay HS (2011) In vitro production of benzylisoquinoline from Stephania tetrandra through callus culture under the influence of different additives. Bot Stud 52:285–294

    CAS  Google Scholar 

  • Li P, Linhardt RJ, Cao Z (2016) Structural characterization of oligochitosan elicitor from Fusarium sambucinum and its elicitation of defensive responses in Zanthoxylum bungeanum. Int J Mol Sci 17(12):2076. https://doi.org/10.3390/ijms17122076

    Article  Google Scholar 

  • Liu ZL, Liu QZ, SS D, Deng ZW (2012) Mosquito larvicidal activity of alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes albopictus (Diptera: Culicidae). Parasitol Res 111(3):991–996. https://doi.org/10.1007/s00436-012-2923-9

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Park YG, Jeong BR (2016) Chemical elicitor-induced modulation of antioxidant metabolism and enhancement of secondary metabolite accumulation in cell suspension cultures of Scrophularia kakudensis Franch. Int J Mol Sci 17(3):399. https://doi.org/10.3390/ijms17030399

    Article  Google Scholar 

  • Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015) Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167(3):1004–1016. https://doi.org/10.1104/pp.114.255703

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nahar UJ, Bhuiyan MMR, Samsudduzah ANM, Uddin MR, Maryam Z (2015) Phytochemical screening, cytotoxic and CNS depressant activities of Holarrhena antidysenterica leaves and seeds. Int J Pharm Sci Res 6:620–623

    Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96(1):66–73. https://doi.org/10.1016/j.foodchem.2005.01.057

    Article  CAS  Google Scholar 

  • Oleszek WA (2002) Chromatographic determination of plant saponins. J Chromatogr A 967(1):147–162. https://doi.org/10.1016/S0021-9673(01)01556-4

    Article  CAS  Google Scholar 

  • Olugu SV, Nyegue M, Kamga PB, Bayoï JR, Etoa FX (2014) Activity of conessine at various temperatures and pH on inhibition of germination of Bacillus cereus and Bacillus stearothermophilus spores. Afr J Microbiol Res 8:320–326

    Article  Google Scholar 

  • Panda AK, Bisaria VS, Mishra S (1992) Alkaloid production by plant cell culture of Holarrhena antidysenterica: effect of precursor feeding and cultivation in stirred tank bioreactor. Biotechnol Bioeng 39(10):1052–1057. https://doi.org/10.1002/bit.260391009

    Article  CAS  Google Scholar 

  • Pandey V, Agrawal V, Raghavendra K, Dash AP (2007) Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res 102(1):171–174. https://doi.org/10.1007/s00436-007-0763-9

    Article  Google Scholar 

  • Pandey V, Chopra M, Agrawal V (2011) In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of Spilanthes acmella. Parasitol Res 108(2):297–304. https://doi.org/10.1007/s00436-010-2056-y

    Article  Google Scholar 

  • Pednekar PA, Raman B (2013) Antimicrobial and antioxidant potential with FTIR analysis of Ampelocissus latifolia (Roxb.) Planch. leaves. Asian J Pharm Clin Res 6:67–73

    Google Scholar 

  • Parale A, Barmukh R, Nikam T (2010) Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monniera (L.) Pennell. Physiol Mol Biol Plants 16(2):167–175. https://doi.org/10.1007/s12298-010-0018-6

    Article  CAS  Google Scholar 

  • Parast BM, Chetri SK, Sharma K, Agrawal V (2011) In vitro isolation, elicitation of psoralen in callus cultures of Psoralea corylifolia and cloning of psoralen synthase gene. Plant Physiol Biochem 49(10):1138–1146. https://doi.org/10.1016/j.plaphy.2011.03.017

    Article  CAS  Google Scholar 

  • Parast MB, Rasouli M, Rustaiee AR, Zardari S, Agrawal V (2014) Quantification of asiatic acid from plant parts of Centella asiatica L. and enhancement of its synthesis through organic elicitors in in vitro. Hortic Environ Biotechnol 55:578–582

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol 167C:103–108

    Article  Google Scholar 

  • Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21(12):1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005

    Article  CAS  Google Scholar 

  • Pfalz M, Mikkelsen MD, Bednarek P, Olsen CE, Halkier BA, Kroymannb J (2011) Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 23(2):716–729. https://doi.org/10.1105/tpc.110.081711

    Article  CAS  Google Scholar 

  • Promsiri S, Naksathit A, Kruatrachue M, Thavara U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Science 13(3):179–188

    Article  Google Scholar 

  • Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88. https://doi.org/10.1016/j.rvsc.2014.11.009

    Article  CAS  Google Scholar 

  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182. https://doi.org/10.3390/molecules21020182

    Article  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20(2):101–153

    Article  CAS  Google Scholar 

  • Rawani A, Ray AS, Ghosh A, Sakar M, Chandra G (2017) Larvicidal activity of phytosteroid compounds from leaf extract of Solanum nigrum against Culex vishnui group and Anopheles subpictus. BMC Research Notes 10(1):135. https://doi.org/10.1186/s13104-017-2460-9

    Article  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:185–205

    Article  Google Scholar 

  • Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P (2016) Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. J Exp Bot 67(17):5173–5185. https://doi.org/10.1093/jxb/erw284

    Article  CAS  Google Scholar 

  • Sharabasy SE (2004) Effects of different precursors on characters and production of some secondary products from date palm (Phoenix dactylifera L.) cv. Sewi tissues during embryogenesis stage. Arab J Biotech 7:91–98

    Google Scholar 

  • Sharma G, Kapoor H, Chopra M, Kumar K, Agrawal V (2014) Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds. Parasitol Res 113(1):197–209. https://doi.org/10.1007/s00436-013-3644-4

    Article  Google Scholar 

  • Siddiqui BS, Ali ST, Rizwani GH, Begum S, Tauseef S, Ahmad A (2012) Antimicrobial activity of the methanolic bark extract of Holarrhena pubescens (Buch. Ham), its fractions and the pure compound conessine. Nat Prod Res 26(11):987–992. https://doi.org/10.1080/14786419.2010.537268

    Article  CAS  Google Scholar 

  • Singh RK, Mittal PK, Kumar G, Dhiman RC (2014) Evaluation of mosquito larvicidal efficacy of leaf extract of a cactus plant, Agave sisalana. J Entomol Zool Stud 2:83–86

    Google Scholar 

  • Siriyong T, Chusri S, Srimanote P, Tipmanee V, Voravuthikunchai SP (2016) Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii. Microb Drug Resist 22(4):273–282. https://doi.org/10.1089/mdr.2015.0194

    Article  CAS  Google Scholar 

  • Talontsi FM, Matasyoh JC, Ngoumfo RM, Chepkorir R (2011) Mosquito larvicidal activity of alkaloids from Zanthoxylum lemairei against the malaria vector Anopheles gambiae. Pest Biochem Physiol 99(1):82–85. https://doi.org/10.1016/j.pestbp.2010.11.003

    Article  CAS  Google Scholar 

  • Thappa RK, Tikku K, Saxena BP, Vaid RM, Bhutani KK (1989) Conessine as a larval growth inhibitor, sterilant, and antifeedant from Holarrhena antidysenterica Wall. Int J Trop Insect Sci 10(02):149–155. https://doi.org/10.1017/S1742758400010304

    Article  CAS  Google Scholar 

  • Thorpe T, Meier D (1972) Starch metabolism, respiration, and shoot formation in tobacco callus cultures. Physiol Plant 27(3):365–369. https://doi.org/10.1111/j.1399-3054.1972.tb03629.x

    Article  CAS  Google Scholar 

  • Vakil MM, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54(1):49. https://doi.org/10.1186/1999-3110-54-49

    Article  Google Scholar 

  • Verma G, Dua VK, Agarwal DD, Atul PK (2011) Anti-malarial activity of Holarrhena antidysenterica and Viola canescens, plants traditionally used against malaria in the Garhwal region of north-west Himalaya. Malar J 10(1):20. https://doi.org/10.1186/1475-2875-10-20

    Article  Google Scholar 

  • WHO (2015) Fact sheet: world malaria report 2015. Updated 9 December 2015

  • World Health Organization (WHO) 2009, Available from: http://www.who.int/mediumcentre/factsheets/fs117/en/index.html. Accessed April 2012

  • Woerdenbag HJ, Lüers JF, Van Uden W, Pras N, Malingré TM, Alfermann AW (1993) Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua L. Plant Cell Tissue Organ Cult 32(2):247–257. https://doi.org/10.1007/BF00029850

    Article  CAS  Google Scholar 

  • Wu J, Lin L (2003) Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Appl Microbiol Biotechnol 62(2–3):151–155. https://doi.org/10.1007/s00253-003-1275-x

    Article  CAS  Google Scholar 

  • Yang F, Wei NN, Gao R, Piao XC, Lian ML (2015) Effect of several medium factors on polysaccharide and alkaloid accumulation in protocorm-like bodies of Dendrobium candidum during bioreactor culture. Acta Physiol Plant 37:1–9

    Article  Google Scholar 

  • Yang ZD, Duan Z, Xue WW, Yao XJ, Li S (2012) Steroidal alkaloids from Holarrhena antidysenterica as acetyplcholinesterase inhibitors and the investigation for structure-activity relationships. Life Sci 90(23–24):929–933. https://doi.org/10.1016/j.lfs.2012.04.017

    Article  CAS  Google Scholar 

  • Yuan Y, Li C, Hu Z, Wu J (2001) Signal transduction pathway for oxidative burst and taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum. Enzym Microb Technol 29(6–7):372–379. https://doi.org/10.1016/S0141-0229(01)00406-9

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

    Article  CAS  Google Scholar 

  • Zhou Y, XL D, Zheng X, Huang M, Li Y, Wang XM (2017) ITS2 barcode for identifying the officinal rhubarb source plants from its adulterants. Biochem Syst Ecol 70:177–185. https://doi.org/10.1016/j.bse.2016.12.004

    Article  Google Scholar 

  • Zirihi GN, Grellier P, Guédé-Guina F, Bodo B, Mambu L (2005) Isolation, characterization and antiplasmodial activity of steroidal alkaloids from Funtumia elastica (Preuss) Stapf. Bioorg Med Chem Lett 15(10):2637–2640. https://doi.org/10.1016/j.bmcl.2005.03.021

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the University of Delhi for providing financial assistance in the form of R&D and DST PURSE grants. Dinesh Kumar is indebted to University Grants Commission, New Delhi for the award of JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Kumar, G., Das, R. et al. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston. Environ Sci Pollut Res 25, 6783–6796 (2018). https://doi.org/10.1007/s11356-017-1038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1038-3

Keywords

Navigation