Skip to main content

Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Plants are the most appropriate source of variety of compounds that are useful to mankind as food, fiber, medicines, natural products, industrial raw material, etc. A large number of metabolites (primary and secondary) have been utilized by mankind since many years ago. However, there are certain limitations like overharvesting the natural plant, low amount of metabolite/compound, etc., which have been associated with the availability of natural products/compounds. This common problem has become major hurdles for researchers these days. To address such problems, scientists have moved toward more efficient technique like genetic transformation methods. In today’s era, Agrobacterium tumefaciens-mediated transformation (ATMT) strategies have shown to be an efficient and most sophisticated technique to understand about modifications, cloning, and diversification in biosynthetic pathways in planta. The existing knowledge and many successful achievements in biotechnology sector have facilitated the development of new methods like metabolic engineering to divert the target metabolic flux in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATMT:

A. tumefaciens-mediated genetic transformation

DW:

Dry weight

MAPs:

Medicinal and Aromatic Plants

ME:

Metabolic engineering

PAL:

Phenylalanine ammonia-lyase

T-DNA:

Transfer DNA

References

  1. Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9:323–343

    Article  CAS  Google Scholar 

  2. Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C, Christou P (2009) When more is better: multigene engineering in plants. Trends Plant Sci 15(1):48–55

    Article  CAS  Google Scholar 

  3. Ingelbrecht IL, Herman LM, Deckeyser RA, Van Montagu MC, Depicker AG (1989) Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1:671–680

    CAS  Google Scholar 

  4. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  5. Kennedy BW (1980) Estimates of U.S. crop losses to prokaryote plant pathogens. Plant Dis 64:674–676

    Article  Google Scholar 

  6. Schroth MN, Mc-cain AH, Foott JH, Huisman OC (1988) Reduction in yield and vigor of grapevine caused by crown gall disease. Plant Dis 72:241–246

    Article  Google Scholar 

  7. Ricker AJ, Berbee JG, Smalley EB (1959) Effects of crown gall and hairy root on the growth of apple trees. Phytopathology 49:88–90

    Google Scholar 

  8. Lopatin MI (1939) Influence of bacterial root center on the development of the cherry tree in the orchard. Plant Prot 18:167–173

    Google Scholar 

  9. White PR, Braun AC (1941) Crown gall production by bacteria-free tumor tissues. Science 94:239–241

    Article  CAS  Google Scholar 

  10. Braun AC (1947) Thermal studies on the factors responsible for the tumor initiation in crown gall. Am J Bot 34:234–240

    Article  CAS  Google Scholar 

  11. Braun AC, Mandle RJ (1948) Studies on the inactivation of the tumor-inducing principle in crown gall. Growth 12:255–269

    CAS  Google Scholar 

  12. Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  CAS  Google Scholar 

  13. Van Larebeke N, Enbler G, Holsters M, Van Den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    Article  Google Scholar 

  14. Depicker A, Van Montagu M, Schell J (1978) Homologous sequences in different Ti plasmids are essential for oncogenicity. Nature 275:150–152

    Article  CAS  Google Scholar 

  15. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  Google Scholar 

  16. Chilton MD, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti plasmids overlaps T-DNA maintained in plant tumors. Nature 275:147–149

    Article  CAS  Google Scholar 

  17. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  Google Scholar 

  18. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  Google Scholar 

  19. Zambryski P, Joos PH, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    CAS  Google Scholar 

  20. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  Google Scholar 

  21. Chilton MD (1993) Agrobacterium gene transfer: progress on a “poor man’s vector” for maize. Proc Natl Acad Sci U S A 90:3119–3120

    Article  CAS  Google Scholar 

  22. Vanlentine L (2003) Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 133:948–955

    Article  CAS  Google Scholar 

  23. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37

    Article  CAS  Google Scholar 

  24. Guilley H, Dudley RK, Jonard G, Balazs E, Richards KE (1982) Transcription of cauliflower mosaic virus DNA: detection of promoter sequences and characterization of transcripts. Cell 30:763–773

    Article  CAS  Google Scholar 

  25. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  Google Scholar 

  26. Fang RX, Nagy F, Sivasubramanian S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1(1):141–150

    Article  CAS  Google Scholar 

  27. Zarate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6:475–491

    Article  CAS  Google Scholar 

  28. Benfey PN, Ren L, Chua NH (1990) Tissue specific expression from CaMV35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    CAS  Google Scholar 

  29. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of the CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  Google Scholar 

  30. Koosha F, Muller RH, Davis SS (1989) Poly hydroxy butyrate as a drug carrier. Crit Rev Ther Drug Carrier Syst 6:117–130

    CAS  Google Scholar 

  31. Zuo J, Chua NH (2000) Chemical inducible systems for regulated expression of plant genes Curr. Opin Biotechnol 11:146–151

    Article  CAS  Google Scholar 

  32. Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    Article  CAS  Google Scholar 

  33. Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  CAS  Google Scholar 

  34. An YQ, Huang S, McDowell JM, McKinney EC, Meagher RB (1996) Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. Plant Cell 8:15–30

    Article  CAS  Google Scholar 

  35. An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  CAS  Google Scholar 

  36. Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    Article  CAS  Google Scholar 

  37. Molnar A, Lovas A, Banfalvi Z, Lakatos L, Polgar Z, Horvath S (2001) Tissue-specific signal(s) activate the promoter of a metallo carboxy peptidase inhibitor gene family in potato tuber and berry. Plant Mol Biol 46:301–311

    Article  CAS  Google Scholar 

  38. Liu XJ, Prat S, Willmitzer L, Frommer WB (1990) Cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet 223:401–406

    Article  CAS  Google Scholar 

  39. Qinggele C, Mingchun L, Dongsheng W, Yi C, Laijun X (2007) Isolation and sequencing analysis on the seed-specific promoter from soybean. Front Agric China 1:17–23

    Article  Google Scholar 

  40. Chen ZL, Schuler MA, Beachy RN (1986) Functional analysis of regulatory elements in a plant embryo-specific gene. Proc Natl Acad Sci U S A 83:8560–8564

    Article  CAS  Google Scholar 

  41. Russell DA, Fromm ME (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 6:157–168

    Article  CAS  Google Scholar 

  42. Rossi V, Motto M, Pellegrini L (1997) Analysis of the methylation pattern of the maize opaque-2 (O2) promoter and in vitro binding studies indicate that the O2 B-Zip protein and other endosperm factors can bind to methylated target sequences. J Biol Chem 272:13758–13765

    Article  CAS  Google Scholar 

  43. Ali S, Taylor WC (2001) The 3Œ non-coding region of a C4 photosynthesis gene increases transgene expression when combined with heterologous promoters. Plant Mol Biol 46:325–333

    Article  CAS  Google Scholar 

  44. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  CAS  Google Scholar 

  45. Haran S, Logendra S, Seskar M, Bratanova M, Raskin I (2000) Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol 124:615–626

    Article  CAS  Google Scholar 

  46. De Veylder L, Van Montagu M, Inze D (1997) Herbicide safener inducible gene expression in Arabidopsis thaliana. Plant Cell Physiol 38:568–577

    Article  Google Scholar 

  47. Frey AD, Rimann M, Bailey JE, Kallio PT, Thompson CJ, Fussenegger M (2001) Novel pristinamycin-responsive expression systems for plant cells. Biotechnol Bioeng 74:154–163

    Article  CAS  Google Scholar 

  48. Martinez A, Sparks C, Hart CA, Thompson J, Jepson I (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J 19:97–106

    Article  CAS  Google Scholar 

  49. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  CAS  Google Scholar 

  50. Caddick MX, Greenland AJ, Jepson I, Krause KP, Qu N, Riddell KV, Salter MG, Schuch W, Sonnewald U, Tomsett AB (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16:177–180

    Article  CAS  Google Scholar 

  51. Mysore KS, Ryu CM (2004) Nonhost resistance: how much do we know? Trends Plant Sci 9:97–104

    Article  CAS  Google Scholar 

  52. Bolton MD (2009) Primary metabolism and plant defense–fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  CAS  Google Scholar 

  53. Kangasjarvi S, Neukermans J, Li S, Aro EM, Noctor G (2012) Photosynthesis, photorespiration and light signalling in defence responses. J Exp Bot 63:1619–1636

    Article  CAS  Google Scholar 

  54. McKersie BD, Bowley SR, Jones KS (1999) Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119:839–847

    Article  CAS  Google Scholar 

  55. Tesfaye M, Temple SJ, Allen DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  CAS  Google Scholar 

  56. Galili G, Hofgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    Article  CAS  Google Scholar 

  57. Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  Google Scholar 

  58. Zheng Z, Sumi K, Tanaka K, Murai N (1995) The bean seed storage protein p-Phaseolin 1s synthesized, processed, and accumulated in the vacuolar Type-lI protein bodies of transgenic rice endosperm. Plant Physiol 109:777–786

    Article  CAS  Google Scholar 

  59. Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci U S A 97(7):3724–3729. doi:10.1073/pnas.050012697

    Article  CAS  Google Scholar 

  60. Zhu XH, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845–853

    Article  CAS  Google Scholar 

  61. Kok-Jacon GA, Ji Q, Vincken J-P, Visser RGF (2003) Towards a more versatile a-glucan synthesis in plants. J Plant Physiol 160:765–777

    Article  CAS  Google Scholar 

  62. Regierer B, Fernie AR, Springer F, Perez-Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P, Kossmann J (2002) Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nat Biotechnol 20:1256–1260

    Article  CAS  Google Scholar 

  63. Rosche E, Blackmore D, Tegeder M, Richardson T, Schroeder H, Higgins TJV, Frommer WB, Offler CE, Patrick JW (2002) Seed-specific overexpression of the potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J 30:165–175

    Article  CAS  Google Scholar 

  64. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci U S A 99:1724–1729

    Article  CAS  Google Scholar 

  65. Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    CAS  Google Scholar 

  66. Liu QQ, Wang ZY, Chen XH, Cai XL, Tang SZ, Yu HX, Zhang JL, Hong MM, Gu MH (2003) Stable inheritance of the antisense Waxy gene in transgenic rice with reduced amylose level and improved quality. Transgenic Res 12:71–82

    Article  Google Scholar 

  67. Fujita N, Kubo A, Suh DS, Wong KS, Jane JL, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44:607–618

    Article  CAS  Google Scholar 

  68. Andersson M, Melander M, Pojmark P, Larsson H, Leif B, Hofvander P (2006) Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines. J Biotechnol 123(2):137–148

    Article  CAS  Google Scholar 

  69. Vincken QJJP, Suurs LCJM, Visser RGF (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Mol Biol 51:789–801

    Article  Google Scholar 

  70. Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  Google Scholar 

  71. Zhong RQ, Morrison WH, Freshour GD, Hahn MG, Ye ZH (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol 132:786–795

    Article  CAS  Google Scholar 

  72. Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129:797–807

    Article  CAS  Google Scholar 

  73. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  Google Scholar 

  74. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7(8):366–373

    Article  CAS  Google Scholar 

  75. Wu M, Wu Y, Wang M (2006) Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Biotechnol Prog 22(4):1012–1024

    Article  CAS  Google Scholar 

  76. Bouwmeester HJ, Bertea CM, Kraker JW, Franssen MCR (2006) Research to improve artemisinin production for use in the preparation of anti-malarial drugs. In: Bogers RJ, Craker LE, Langer D (eds) Medicinal and aromatic plants. Springer, Amsterdam, pp 275–290

    Chapter  Google Scholar 

  77. Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  Google Scholar 

  78. Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 103:1079–1089

    Article  CAS  Google Scholar 

  79. Broun P, Somerville C (2001) Progress in plant metabolic engineering. Proc Natl Acad Sci U S A 98:8925–8927

    Article  CAS  Google Scholar 

  80. Lucker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LH, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-b-d-glucopyranoside. Plant J 27:315–324

    Article  CAS  Google Scholar 

  81. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U et al (2001) Enhanced levels of the aroma and flavour compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  CAS  Google Scholar 

  82. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci U S A 99:1092–1097

    Article  CAS  Google Scholar 

  83. Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:14–17

    Article  CAS  Google Scholar 

  84. Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: Introducing the b-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    Google Scholar 

  85. Kappers IF, Aharoni A, van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  CAS  Google Scholar 

  86. Ralley L, Enfissi EM, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39:477–486

    Article  CAS  Google Scholar 

  87. Niu Y, Luo H, Sun C, Yang TJ, Dong L, Huang L, Chen S (2014) Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene 533(1):295–303

    Article  CAS  Google Scholar 

  88. Sun Y, Zhao HW, Ge F, Shi L, Liu DQ (2013) The construction of over-expression vector for Panax notoginseng SS gene and its transformation] [Article in Chinese] Yao Xue Xue Bao 48(1):138–143

    Google Scholar 

  89. Chappell J (2004) Valencene synthase-a biochemical magician and harbinger of transgenic aromas. Trends Plant Sci 9:266–269

    Article  CAS  Google Scholar 

  90. Zhou Z, He H, Ma L, Yu X, Mi Q, Pang J, Tang G, Bao L (2015) Overexpression of a GmCnx1 gene enhanced activity of nitrate reductase and aldehyde oxidase, and boosted mosaic virus resistance in soybean. PLoS One 10(4):e0124273

    Article  CAS  Google Scholar 

  91. Wei Z, Qu Z, Zhang L, Zhao S, Bi Z, Ji X, Wang X, Wei H (2015) Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS One 10(3):e0120669

    Article  CAS  Google Scholar 

  92. Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P (2015) Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Rep 35(1):195–211

    Article  CAS  Google Scholar 

  93. Yuan Y, Liu W, Zhang Q, Xiang L, Liu X, Chen M, Lin Z, Wang Q, Liao Z (2014) Overexpression of artemisinic aldehyde 11(13) reductase gene–enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L. Biotechnol Appl Biochem 62(1):17–23

    Article  CAS  Google Scholar 

  94. Alam P, Abdin MZ (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep 30(10):1919–1928

    Article  CAS  Google Scholar 

  95. Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11(3):3298–3309

    Article  CAS  Google Scholar 

  96. Xu H, Park NI, Li X, Kim YK, Lee SY, Park SU (2010) Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour Technol 101(24):9715–9722

    Article  CAS  Google Scholar 

  97. Li W, Wang B, Wang M, Chen M, Yin JM, Kaleri GM, Zhang RJ, Zuo TN, You X, Yang Q (2014) Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation. J Integr Plant Biol 56(4):364–372

    Article  CAS  Google Scholar 

  98. Mrizova K, Jiskrova E, Vyroubalova S, Novak O, Ohnoutkova L, Pospisilova H, Frebort I, Harwood WA, Galuszka P (2013) Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One 8(11):e79029

    Article  CAS  Google Scholar 

  99. Arun M, Subramanyam K, Theboral J, Sivanandhan G, Rajesh M, Kapil Dev G, Jaganath B, Manickavasagam M, Girija S, Ganapathi A (2014) Transfer and targeted overexpression of γ-tocopherol methyltransferase (γ-TMT) gene using seed-specific promoter improves tocopherol composition in Indian soybean cultivars. Appl Biochem Biotechnol 172(4):1763–1776

    Article  CAS  Google Scholar 

  100. Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE (2013) The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54(12):2034–2046

    Article  CAS  Google Scholar 

  101. Li JD, Qin BF, Yang CX, Lan XZ, Wu NB, Liao ZH (2013) Enhanced biosynthesis of scopolamine in transgenic Atropa belladonna by overexpression of h6h gene. Zhongguo Zhong Yao Za Zhi. [Article in Chinese] 38(11):1719–1724

    Google Scholar 

  102. Grover A, Samuel G, Bisaria VS, Sundar D (2013) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng 115(6):680–685

    Article  CAS  Google Scholar 

  103. Chen R, Harada Y, Bamba T, Nakazawa Y, Gyokusen K (2012) Overexpression of an isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver. BMC Biotechnol 12:78

    Article  CAS  Google Scholar 

  104. Aquil S, Husaini AM, Abdin MZ, Rather GM (2009) Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Med 75(13):1453–1458

    Article  CAS  Google Scholar 

  105. Rao AQ, Irfan M, Saleem Z, Nasir IA, Riazuddin S, Husnain T (2011) Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J Zhejiang Univ Sci B 12(4):326–334

    Article  CAS  Google Scholar 

  106. Thiele A, Herold M, Lenk I, Quail PH, Gatz C (1999) Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120(1):73–82

    Article  CAS  Google Scholar 

  107. Inui T, Kawano N, Shitan N, Yazaki K, Kiuchi F, Kawahara N, Sato F, Yoshimatsu K (2012) Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase in transgenic Coptis japonica plants. Biol Pharm Bull 35(5):650–659

    Article  CAS  Google Scholar 

  108. Zang YX, Kim JH, Park YD, Kim DH, Hong SB (2008) Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1. BMB Rep 41:472–478

    Article  CAS  Google Scholar 

  109. Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

    Article  CAS  Google Scholar 

  110. Dobnik D, Baebler S, Kogovšek P, Novak MP, Stebih D, Panter G, Janez N, Morisset D, Zel J, Gruden K (2013) β-1,3-glucanase class III promotes spread of PVYNTN and improves in planta protein production. Plant Biotechnol Rep 7(4):547–555

    Article  Google Scholar 

  111. Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113(3):933–942

    Article  CAS  Google Scholar 

  112. Sasaki K, Mito K, Ohara K, Yamamoto H, Yazaki K (2008) Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol 146(3):1075–1084

    Article  CAS  Google Scholar 

  113. Zhang F, Lu X, Lv Z, Zhang L, Zhu M, Jiang W, Wang G, Sun X, Tang K (2013) Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L. PLoS One 8(2):e56697

    Article  CAS  Google Scholar 

  114. Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34

    Article  CAS  Google Scholar 

  115. Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition (scoolamlne/hyoscyamine 61-hydroxylase). Proc Natl Acad Sci U S A 89:11799–11803

    Article  CAS  Google Scholar 

  116. Huang Z, Lin J, Cheng Z, Xu M, Huang X, Yang Z, Zheng J (2015) Production of dammarane-type sapogenins in rice by expressing the dammarenediol-II synthase gene from Panax ginseng C.A. Mey. Plant Sci 239:106–114

    Article  CAS  Google Scholar 

  117. Majumdar S, Garai S, Jha S (2012) Use of cryptogein gene to stimulate the accumulation of Bacopa saponins in transgenic Bacopa monnieri plants. Plant Cell Rep 31(10):1899–1909

    Article  CAS  Google Scholar 

  118. Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3(1):57–69

    Article  CAS  Google Scholar 

  119. Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol Plant 49(6):643–655

    Article  CAS  Google Scholar 

  120. Han JY, Wang HY, Choi YE (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33(2):225–233

    Article  CAS  Google Scholar 

  121. Lannenpaa M (2014) Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Rep 33(8):1377–1388

    Article  CAS  Google Scholar 

  122. Katsumoto Y, Mizutani MF, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Sakakibara KY, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48(11):1589–1600

    Article  CAS  Google Scholar 

  123. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  Google Scholar 

  124. Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355

    Article  CAS  Google Scholar 

  125. Facchini PJ (1999) Plant secondary metabolism: out of the evolutionary abyss. Trends Plant Sci 4:382–384

    Article  CAS  Google Scholar 

  126. Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Ann Rev Plant Biol 52:29–66

    Article  CAS  Google Scholar 

  127. Maplestone RA, Stone MJ, Williams DH (1992) The evolutionary role of secondary metabolites – a review. Gene 115:151–157

    Article  CAS  Google Scholar 

  128. Kim YS, Sano H (2008) Pathogen resistance of transgenic tobacco plants producing caffeine. Phytochemistry 69:882–888

    Article  CAS  Google Scholar 

  129. Kim YS, Uefuji H, Ogita S, Sano H (2006) Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic Res 15:667–672

    Article  CAS  Google Scholar 

  130. Hashimoto T, Yamada Y (2003) New genes in alkaloid metabolism and transport. Curr Opin Biotechnol 14:163–168

    Article  CAS  Google Scholar 

  131. Katoh A, Ohki H, Hashimoto T (2005) Molecular regulation of nicotine biosynthesis. Plant Biotechnol 22:389–392

    Article  CAS  Google Scholar 

  132. De Boer KD, Dalton HL, Edward FJ, Ryan SM, Hamill JD (2013) RNAi-mediated down regulation of ornithine decarboxylase (ODC) impedes wound-stress stimulation of anabasine synthesis in Nicotiana glauca. Phytochemistry 86:21–28

    Article  CAS  Google Scholar 

  133. Park SU, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128:696–706

    Article  CAS  Google Scholar 

  134. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187

    Article  CAS  Google Scholar 

  135. Dey PM, Harborne JB (1989) Methods in plant biochemistry: plant phenolics, vol 1. Academic, New York

    Google Scholar 

  136. Ryan D, Robards K, Prenzler P, Antolovich M (1999) Applications of mass spectrometry to plant phenols. TrAC Trends Anal Chem 18:362–372

    Article  CAS  Google Scholar 

  137. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085

    Article  CAS  Google Scholar 

  138. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  CAS  Google Scholar 

  139. Winkel-Shirley B (2001) Flavonoid biosynthesis, a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493. doi:10.1104/pp.126.2.485

    Article  CAS  Google Scholar 

  140. Rosati C, Simoneau P, Treutter D, Poupard P, Cadot Y, Cadic A, Duron M (2003) Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol Breed 12:197–208

    Article  CAS  Google Scholar 

  141. Forkmann G, Martens S (2001) Metabolic engineering and application of flavonoids. Curr Opin Biotechnol 12:155–160

    Article  CAS  Google Scholar 

  142. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, Van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruits containing increased levels of flavonoids. Nat Biotechnol 19:470–474

    Article  CAS  Google Scholar 

  143. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106. doi:10.1093/jxb/erf044

    Article  CAS  Google Scholar 

  144. Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88

    Article  CAS  Google Scholar 

  145. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  Google Scholar 

  146. Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  CAS  Google Scholar 

  147. Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczytt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii Benth. Plant Breed 122(4):347–351

    Article  CAS  Google Scholar 

  148. Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato betagalactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762

    Article  CAS  Google Scholar 

  149. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  CAS  Google Scholar 

  150. Tieman DM, Handa AK (1994) Reduction in pectin methyltransferase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol 106:429–436

    Article  CAS  Google Scholar 

  151. Langley KR, Martin A, Stenning R, Murray AJ, Hobson GE, Schuch WW, Bird CR (1994) Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. J Sci Food Agric 66(4):547–554

    Article  CAS  Google Scholar 

  152. Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    Article  CAS  Google Scholar 

  153. Diaz de la Garza RID, Quinlivan R, Klaus EP, Basset SM, Gregory GJ, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci U S A 101:13720–13725

    Article  CAS  Google Scholar 

  154. Diaz de la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci U S A 104(10):4218–4222

    Article  CAS  Google Scholar 

  155. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  CAS  Google Scholar 

  156. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Petit J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    Article  CAS  Google Scholar 

  157. Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol 332:1007–1021

    Article  CAS  Google Scholar 

  158. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97:11102–11107

    Article  CAS  Google Scholar 

  159. D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214

    Article  CAS  Google Scholar 

  160. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of β-carotene and lycopene content in tomato fruit. Plant J 24:413–420

    Article  CAS  Google Scholar 

  161. Wurbs D, Ruf S, Bock B (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    Article  CAS  Google Scholar 

  162. Romer S, Fraser PD, Kiano JW, Shipton CA, Mills PB, Drake R, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  CAS  Google Scholar 

  163. Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids. Plant Biotechnol J 3:17–27

    Article  CAS  Google Scholar 

  164. Zanor MI, Osorio S, Nunes Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218

    Article  CAS  Google Scholar 

  165. Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123

    Article  CAS  Google Scholar 

  166. Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Dominguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12 regulated transcriptional network. PLoS Genet 5(12):e1000777

    Article  CAS  Google Scholar 

  167. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  Google Scholar 

  168. Schijlen E, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  CAS  Google Scholar 

  169. Simkin AJ, Gaffe J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68(11):1545–1556

    Article  CAS  Google Scholar 

  170. Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168(3):242–252

    Article  CAS  Google Scholar 

  171. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34

    Article  CAS  Google Scholar 

  172. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  Google Scholar 

  173. Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55(1):89–103

    Article  CAS  Google Scholar 

  174. Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci U S A 101:9897–9902

    Article  CAS  Google Scholar 

  175. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  Google Scholar 

  176. Li L, Zhou YH, Cheng XF, Sun JY, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc Natl Acad Sci U S A 100:4939–4944

    Article  CAS  Google Scholar 

  177. Abbott JC, Barakate A, Pincon G, Legrand M, Lapierre C, Mila I, Schuch W, Halpin C (2002) Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco. Plant Physiol 128:844–853

    Article  CAS  Google Scholar 

  178. Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  CAS  Google Scholar 

  179. Kawaoka A, Ebinuma H (2001) Transcriptional control of lignin biosynthesis by tobacco LIM protein. Phytochemistry 57:1149–1157

    Article  CAS  Google Scholar 

  180. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  CAS  Google Scholar 

  181. Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  CAS  Google Scholar 

  182. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  183. Bell-Lelong DA, Cusumano JC, Meyer K, Chapple C (1997) Cinnamate- 4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol 113:729–738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiq ur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Khan, S., ur Rahman, L. (2017). Pathway Modulation of Medicinal and Aromatic Plants Through Metabolic Engineering Using Agrobacterium tumefaciens . In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_15

Download citation

Publish with us

Policies and ethics