Skip to main content
Log in

Bitterness inheritance in apricot (P. armeniaca L.) seeds

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Seed bitterness, due to cyanogenic glucosides, has been reported in apricot as a recessive trait, being determined by a single gene. In this study, 21 F1 and 10 F2 populations from parents with either bitter or non-bitter (‘sweet’) phenotype were tested by seed tasting. Both the ‘bitter’ and the ‘sweet’ phenotypes were represented in populations from ‘bitter × bitter’ and ‘sweet × sweet’ crosses, as well as from self-pollination of either bitter- or sweet-seeded trees, providing evidence that more than one gene is involved in this trait. Ten populations showed segregation ratios inconsistent with a monofactorial inheritance of seed taste with the ‘sweet’ trait dominant over the ‘bitter’. On the other hand, data from spectrophotometric assays indicate that seed cyanoglucoside content cannot be regarded as a quantitative trait. All the observed segregation ratios can be explained by an inheritance mechanism based on five, non-linked genes, involved in two distinct biochemical pathways. Three genes would control different steps in an ‘additive’ pathway (either the biosynthesis of cyanoglucosides, or their transport, or both) leading to accumulation of these metabolites in seeds: homozygosis of recessive alleles of at least one of them would result in the sweet phenotype. Two more genes would provide a cleaving activity, participating to cyanoglucoside catabolism; heterozygosis or homozygosis of dominant alleles at these loci would produce the ‘sweet’ phenotype, while homozygosis for recessive alleles of at least one of them would interrupt the catabolic pathway, leading to the ‘bitter’ trait, if associated with the anabolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen MD, Busk PK, Svendsen I, Møller BL (2000) Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J Biol Chem 275(3):1966–1975

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Kahn RA, Nielsen HL, Møller BL, Halkier BA (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol Biol 36(3):393–405

    Article  PubMed  CAS  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    Article  PubMed  CAS  Google Scholar 

  • Clegg DO, Conn E, Janzen DH (1979) Developmental fate of the cyanogenic glucoside linamarin in Costa Rican wild lima bean seeds. Nature 278:343–344

    Article  CAS  Google Scholar 

  • Corkill L (1942) Cyanogenesis in white clover (Trifolium repens L.). V. The inheritance of cyanogenesis. NZ J Sci Technol B 23:178–193

    Google Scholar 

  • Dicenta F, García JE (1993) Inheritance of the kernel flavour in almond. Heredity 70:308–312

    Article  Google Scholar 

  • Femenia A, Rossello C, Mulet A, Canellas J (1995) Chemical composition of bitter and sweet apricot kernels. J Agric Food Chem 43(2):356–361

    Article  CAS  Google Scholar 

  • Frehner M, Scalet M, Conn E (1990) Pattern of the cyanide potential in developing fruits. Implications for plants accumulating cyanogenic monoglucosides (Phaseolus lunatus) or cyanogenic diglucosides in their seeds (Linum usitatissimum, Prunus amygdalus). Plant Physiol 94:28–34

    PubMed  CAS  Google Scholar 

  • Gomez E, Burgos L, Soriano C, Marin J (1998) Amygdalin content in the seeds of several apricot cultivars. J Sci Food Agric 77:184–186

    Article  CAS  Google Scholar 

  • Gruhnert C, Biehl B, Selmar D (1994) Compartmentation of cyanogenic glucosides and their degrading enzymes. Planta 195(1):36–42

    Article  CAS  Google Scholar 

  • Heppner MJ (1923) The factor for bitterness in the sweet almond. Genetics 8:390–392

    PubMed  CAS  Google Scholar 

  • Heppner MJ (1926) Further evidence of the factor for bitterness in the sweet almond. Genetics 11:605–607

    PubMed  CAS  Google Scholar 

  • Hu Z, Poulton JE (1999) Molecular analysis of (R)-(+)-mandelonitrile lyase microheterogeneity in black cherry. Plant Physiol 119:1535–1546

    Article  PubMed  CAS  Google Scholar 

  • Hughes MA (1991) The cyanogenic polymorphism in Trifolium repens L. (white clover). Heredity 66:105–115

    Article  CAS  Google Scholar 

  • Hughes MA, Stirling JD (1982) A study of dominance at the locus controlling cyanoglucoside production in Trifolium repens L. Euphytica 31:477–483

    Article  CAS  Google Scholar 

  • Hughes MA, Stirling JD, Collinge DB (1984) The inheritance of cyanoglucoside content in Trifolium repens L. Biochem Genet 22:139–151

    Article  PubMed  CAS  Google Scholar 

  • Hughes MA, Sharif AL, Dunn MA, Oxtoby E (1988) The molecular biology of cyanogenesis. In: Evered D, Harnett S (eds) Cyanide compounds in biology. Ciba Foundation Symposium 140:111–130

    PubMed  CAS  Google Scholar 

  • Hughes MA, Sharif AL, Dunn MA, Oxtoby E, Pancoro A (1990) Restriction fragment length polymorphism segregation analysis of the Li locus in Trifolium repens L. Plant Mol Biol 14:407–414

    Article  PubMed  CAS  Google Scholar 

  • Jones DA (1988) Cyanogenesis in animal–plant interactions. In: Evered D, Harnett S (eds) Cyanide compounds in biology. Ciba Foundation Symposium 140:151–176

    PubMed  CAS  Google Scholar 

  • Kester DE, Asay RN (1975) Almonds. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, IN, pp 387–419

    Google Scholar 

  • Kostina KF (1977) Breeding apricot in the southern zone of the USSR. Sadovodstvo 7:24–25

    Google Scholar 

  • Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Masia A, Cabrini L (1994) Determinazione dei glucosidi cianogenici in semi di drupacee. Atti II Giornate Scientifiche S.O.I., San Benedetto del Tronto (Italy), 22–24 giugno 1994, pp 215–216

  • McCarty CD, Lesley JW, Frost HB (1952) Bitterness (benzaldehyde content) of kernels of almond-peach F1 hybrids and their parents. Proc Am Soc Hort Sci 59:254

    CAS  Google Scholar 

  • Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65:1199–1202

    PubMed  CAS  Google Scholar 

  • Nahrstedt A (1985) Cyanogenic compounds as protecting agents for organisms. Plant Syst Evol 150:35–47

    Article  CAS  Google Scholar 

  • Patton CA, Ranney TG, Burton JD, Walgenbach JF (1997) Feeding responses of Japanese beetle to naturally occurring metabolites found in rosaceous plants. J Environ Horticul 15:222–227

    CAS  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    PubMed  CAS  Google Scholar 

  • Poulton JE, Li CP (1994) Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged Prunus seeds. Plant Physiol 104:29–35

    PubMed  CAS  Google Scholar 

  • Prates HT, Schaffert RE, Santos FG, Rodrigues JAS, Butler L, Raslan DS, Alves RB (1998) Isolation, purification, and quantification of dhurrin from tannin-free bird-resistant grain sorghum. International-Sorghum-and-Millets-Newsletter 39:103–104

    Google Scholar 

  • Selmar D, Lieberei R, Biehl B (1988) Mobilization and utilization of cyanogenic glucosides: the linustatin pathway. Plant Physiol 86:711–716

    PubMed  CAS  Google Scholar 

  • Spiegel-Roy P, Kochba J (1974) The inheritance of bitter and double kernel characters in the almond (Prunus amygdalus Batsch). Z. Pflanzenzücht 71:319–329

    Google Scholar 

  • Spiegel-Roy P, Kochba J (1981) Inheritance of nut and kernel traits in almond (Prunus amygdalus Batsch). Euphytica 30:167–174

    Article  Google Scholar 

  • Stoewsand GS, Anderson JL, Lamb RC (1975) Cyanide content of apricot kernels. J Food Sci 40:1107

    Article  CAS  Google Scholar 

  • Swain E, Li CP, Poulton JE (1992a) Development of the potential for cyanogenesis in maturing black cherry (Prunus serotina Ehrh.) fruits. Plant Physiol 98:1423–1428

    PubMed  CAS  Google Scholar 

  • Swain E, Li CP, Poulton JE (1992b) Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds. Plant Physiol 100:291–300

    Article  PubMed  CAS  Google Scholar 

  • Swain E, Poulton JE (1994) Utilization of amygdaline during seedling development of Prunus serotina. Plant Physiol 106:437–445

    PubMed  CAS  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høi PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  PubMed  CAS  Google Scholar 

  • Werner DJ, Creller MA (1997) Genetic studies in peach: inheritance of sweet kernel and male sterility. J Amer Soc Hort Sci 122(2):215–217

    Google Scholar 

  • Wu HC, Poulton JE (1991) Immunocytochemical localization of mandelonitrile lyase in mature black cherry (Prunus serotina Ehrh.) seeds. Plant Physiol 96:1329–1337

    PubMed  CAS  Google Scholar 

  • Zar JH (1984) Testing for goodness of fit. In: Biostatistical analysis, 2nd edn. Prentice-Hall Englewood Cliffs, pp 40–52

  • Zhou JM, Hartmann S, Shepherd BK, Poulton JE (2002) Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases. Plant-Physiology 129(3):1252–1264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Masia (Bologna University, Italy), who provided the cyanoglucoside detection method, P. Morandini and C. Soave (Milan University, Italy) for critical reading of the manuscript, and L. Cabrini and L. Proni for their assistance in field data collection. Work partially funded by the C.N.R. (National Research Council, Rome).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Negri.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, P., Bassi, D., Magnanini, E. et al. Bitterness inheritance in apricot (P. armeniaca L.) seeds. Tree Genetics & Genomes 4, 767–776 (2008). https://doi.org/10.1007/s11295-008-0149-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0149-x

Keywords

Navigation