Skip to main content
Log in

A mini review: photobioreactors for large scale algal cultivation

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae cultivation has gained much interest in terms of the production of foods, biofuels, and bioactive compounds and offers a great potential option for cleaning the environment through CO2 sequestration and wastewater treatment. Although open pond cultivation is most affordable option, there tends to be insufficient control on growth conditions and the risk of contamination. In contrast, while providing minimal risk of contamination, closed photobioreactors offer better control on culture conditions, such as: CO2 supply, water supply, optimal temperatures, efficient exposure to light, culture density, pH levels, and mixing rates. For a large scale production of biomass, efficient photobioreactors are required. This review paper describes general design considerations pertaining to photobioreactor systems, in order to cultivate microalgae for biomass production. It also discusses the current challenges in designing of photobioreactors for the production of low-cost biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  Google Scholar 

  • Andersen RA (2005) Algal culturing techniques, vol 13. Academic Press, New York, p 189

    Google Scholar 

  • Barbosa MJ, Janssen M, Ham N et al (2003) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82:170–179

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Vanessa RF, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C: Toxicol Pharmacol 146:60–78

    Article  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Doran PM (2013) Bioprocess engineering principles, vol 14. Academic Press, New York, pp 751–852

    Google Scholar 

  • ElMekawy A, Hegab HM, Vanbroekhoven K, Pant D (2014) Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renew Sustain Energy Rev 39:617–627

    Article  CAS  Google Scholar 

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    Article  CAS  Google Scholar 

  • Ferreira LS, Rodrigues MS, Converti A et al (2012) Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnol Bioeng 109:444–450

    Article  CAS  Google Scholar 

  • Fleck-Schneider P, Lehr F, Posten C (2007) Modelling of growth and product formation of Porphyridium purpureum. J Biotechnol 132:134–141

    Article  CAS  Google Scholar 

  • Franco-Lara E, Havel J, Peterat F, Weuster-Botz D (2006) Model-supported optimization of phototrophic growth in a stirred-tank photobioreactor. Biotechnol Bioeng 95:1177–1187

    Article  CAS  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  Google Scholar 

  • Hu Q, Kurano N, Kawachi M et al (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  • Masojídek J, Papáček Š, Sergejevová M et al (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15:239–248

    Article  Google Scholar 

  • Matsudo MC, Bezerra RP, Sato S et al (2012) Photosynthetic efficiency and rate of CO2 assimilation by Arthrospira (Spirulina) platensis continuously cultivated in a tubular photobioreactor. Biotechnol J 7:1412–1417

    Article  CAS  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  Google Scholar 

  • Oswald WJ (1969) Current status of microalgae from wastes. Chem Eng Prog Symp Ser 65:87

    CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F et al (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270

    Article  Google Scholar 

  • Sekabira K, Origa HO, Basamba TA et al (2010) Application of algae in biomonitoring and phytoextraction of heavy metals contamination in urban stream water. Int J Environ Sci Technol 8:115–128

    Article  Google Scholar 

  • Sharma NK, Rai AK, Stal LJ (2013) Cyanobacteria: an economic perspective, vol 17. Wiley, London, pp 255–271

    Google Scholar 

  • Sierra E, Acién FG, Fernández JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Educ Sci Technol A Energy Sci Res 29:563–576

    Google Scholar 

  • Slegers PM, Wijffels RH, van Straten G, van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Appl Energy 88:3342–3353

    Article  CAS  Google Scholar 

  • Torres E, Mera R, Herrero C, Abalde J (2014) Isotherm studies for the determination of Cd(II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity. Environ Sci Pollut Res Int 21:12616–12628

    Article  CAS  Google Scholar 

  • Torzillo G, Pushparaj B, Bocci F et al (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74

    Article  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Xue S, Zhang Q, Wu X, Yan C, Cong W (2013) A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour Technol 138:141–147

    Article  CAS  Google Scholar 

  • Yang ST (2011) Bioprocessing for value-added products from renewable resources: new technologies and applications, vol 19. Elsevier, Amsterdam, pp 491–507

    Google Scholar 

  • Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145:316–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided to them by the National Research Foundation (NRF) of Korea, a Grant funded by Korean Government (MEST) (2012R1A2A4A01001539), and the Ministry of Education, Science and Technology (2013006899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jeong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.L., Lee, SM. & Choi, HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31, 1409–1417 (2015). https://doi.org/10.1007/s11274-015-1892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1892-4

Keywords

Navigation