Skip to main content
Log in

Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv.

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Deschampsia antarctica Desv. is the only gramineae capable of colonizing the Antarctic due to the region’s extreme climate and soil environment. In the present research, bacteria colonizing the rhizospheric soil of D. antarctica were isolated and characterized. The soil studies showed that D. antarctica possesses a wide spectrum of psychrotolerant bacteria with extensive and varied antibiotic resistance, as well as heavy metal tolerance. The bacterial strains isolated from the rhizosphere of D. antarctica also produced a diverse pattern of enzymes. Based on the strain identification with partial characterization of the 16S rRNA gene, the majority of the isolates correspond to different Pseudomonas species, and species of the genus Flavobacterium sp. and Arthrobacter sp. The isolated strains collected from this research constitute a unique collection for future, more detailed taxonomic analysis and physiological characterization, contributing to the search for potential biotechnological uses. These findings and others have great potential for developing new biotechnological products from Antarctic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aislabie JM, Chhour KL, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Alberdi M, Bravo L, Gutiérrez A, Gidekel M, Corcuera L (2002) Ecophysiology of Antarctic vascular plants. Physiol Plantarum 115:479–486

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. Available at http://www.ncbi.nlm.nih.gov/BLAST/

    Google Scholar 

  • Baquero F, Negri MC, Morosini MI, Blázquez J (1998) Antibiotic-selective environments. Clin Infect Dis 27:5–11

    Article  Google Scholar 

  • Bartholomew JW, Mittwer T (1952) The Gram stain. Bacteriol Rev 16:1–29

    CAS  Google Scholar 

  • Beyer L, Bölter M, Seppelt RD (2000) Nutrient and thermal regime, microbial biomass and vegetation of Antarctic soils in the Windmill Islands Region of east Antarctica (Wilkes Land). Arct Antarct Alp Res 32:30–39

    Article  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton L, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Article  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1999) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    Google Scholar 

  • Bull AT, Goodfellow M, Slater JH (1992) Biodiversity as a source of innovation in biotechnology. Ann Rev Microbiol 46:219–252

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 46:573–606

    Article  Google Scholar 

  • Calormiris J, Armstrong JL, Seidler RJ (1984) Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol 47:1238–1242

    Google Scholar 

  • Casaretto JA, Serey I, Zúñiga G (1994) Size structure of a population of Deschampsia antarctica (Desv.) in Robert Island, Maritime Antarctica. Serie Científica INACH 44:61–66

    Google Scholar 

  • Cervantes C, Gutiérrez-Corona F (1994) Cooper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve J (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Cowan S, Steel S (1993) Manual for the identification of medical bacteria, 7th edn. Cambridge University Press

  • De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 15:379–384

    Article  CAS  Google Scholar 

  • Eckford R, Cook FD, Saul D, Aislabie J, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68:5181–5185

    Article  CAS  Google Scholar 

  • Edwards J, Lewis-Smith R (1998) Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica Desv. from the marine Antarctic. Brit Antarct Surv Bull 81:43–63

    Google Scholar 

  • Franke S, Gregor G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    CAS  Google Scholar 

  • Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of a CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070

    Article  CAS  Google Scholar 

  • Grass G, Große C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398

    Article  CAS  Google Scholar 

  • Lawrence JG (2000) Clustering of antibiotic resistance genes: beyond the selfish operon. Am Soc Microbiol News 66:281–286

    Google Scholar 

  • Levine WB, Marzluf GA (1989) Isolation and characterization of a cadmium-resistant mutant of Neurospora crassa. Can J Microbiol 35:359–365

    Article  CAS  Google Scholar 

  • Meargeay M, Nies D, Schlegel HD, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-borne resistance to heavy metals. J Bacteriol 162:328–334

    Google Scholar 

  • Nichols DS, Sanderson K, Buia A, Van de Kamp J, Holloway J, Bowman JP, Smith M, Mancuso Nichols C, Nichols PD, McMeekin TA (2002) Bioprospecting and biotechnology in Antarctica. In: Jabour-Green J, Haward M (eds) The Antarctic: past, present and future. Antarctic Cooperative Research Centre, Research Report #28, Hobart, pp 85–103

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH (1998) CHR of prokaryotic proton motive force-driven transporters probably contains chromate/sulphate antiporters. J Bacteriol 180:5799–5802

    CAS  Google Scholar 

  • Pandey KD, Shukla SP, Shukla PN, Giri DD, Singh JS, Singh P, Kashyap AK (2004) Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50:575–584

    CAS  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    CAS  Google Scholar 

  • Purchase D, Miles RJ, Young TWK (1997) Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii. FEMS Microbiol Ecol 22:85–93

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50: 753–789

    Article  CAS  Google Scholar 

  • Smith JJ, Ah Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different Antarctic cold Desert mineral soils. Microb Ecol 51:413–421

    Article  Google Scholar 

  • Spring S, Schulze R, Overmann J, Schleifer KH (2000) Identification and characterization of ecologically significant prokaryotes in the sediment of freshwater lakes: molecular and cultivation techniques. FEMS Microbiol Rev 24:573–590

    Article  CAS  Google Scholar 

  • Tindall BJ (2004) Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microb Ecol 47:271–283

    Article  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610

    Article  Google Scholar 

  • Vishniac H, Klinger J (1986) Yeasts in the Antarctic deserts. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Proceedings of the 4th ISME, Slovene Society for Microbiology, Ljubljana, Slovenia, pp 46–51

  • Wery N, Gerike U, Sharman A, Chaudhuri JB, Hough DW, Danson MJ (2003) Use of packed-column bioreactor for isolation of diverse protease-producing bacteria from Antarctic soil. Appl Environ Microbiol 69:1457–1464

    Article  CAS  Google Scholar 

  • Williams JW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 6:530–537

    Article  CAS  Google Scholar 

  • Zemelman R, Silva J, Henríquez M (1980) Antibiotic resistant bacteria in seawater from Concepción Bay. Arch Biol Exp 13:121

    Google Scholar 

  • Zúñiga GE, Alberdi M, Fernández J, Montiel P, Corcuera LJ (1994) Lipid content in leaves of Deschampsia antarctica from the maritime Antarctic. Phytochemistry 37:669–672

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Grants INACH No. 03-01 and Grant DIUBB 055209 2/R 2005; Convenio Desempeño II 2007 Universidad de La Frontera; to the Instituto Antártico Chileno, Ministerio de Relaciones Exteriores 2005–2007 for logistical support; and the biotechnology company Vitrogen S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gutiérrez-Moraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrientos-Díaz, L., Gidekel, M. & Gutiérrez-Moraga, A. Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv.. World J Microbiol Biotechnol 24, 2289–2296 (2008). https://doi.org/10.1007/s11274-008-9743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9743-1

Keywords

Navigation