Skip to main content

Advertisement

Log in

Molecular mechanisms in lithium-associated renal disease: a systematic review

  • Nephrology – Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease.

Methods

We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium’s effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers.

Results

From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD.

Discussion

Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium’s biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, O’Donovan C, Macqueen G, McIntyre RS, Sharma V, Ravindran A, Young LT, Milev R, Bond DJ, Frey BN, Goldstein BI, Lafer B, Birmaher B, Ha K, Nolen WA, Berk M (2013) Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord 15(1):1–44. doi:10.1111/bdi.12025

    Article  CAS  PubMed  Google Scholar 

  2. Kishore BK, Ecelbarger CM (2013) Lithium: a versatile tool for understanding renal physiology. Am J Physiol Renal Physiol 304(9):F1139–F1149. doi:10.1152/ajprenal.00718.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gold AB, Herrmann N, Lanctot KL (2011) Lithium and its neuroprotective and neurotrophic effects: potential treatment for post-ischemic stroke sequelae. Curr Drug Targets 12(2):243–255

    Article  CAS  PubMed  Google Scholar 

  4. Shulman KI, Rochon P, Sykora K, Anderson G, Mamdani M, Bronskill S, Tran CT (2003) Changing prescription patterns for lithium and valproic acid in old age: shifting practice without evidence. BMJ (Clin Res Ed) 326(7396):960–961. doi:10.1136/bmj.326.7396.960

    Article  Google Scholar 

  5. Baldessarini RJ, Leahy L, Arcona S, Gause D, Zhang W, Hennen J (2007) Patterns of psychotropic drug prescription for U.S. patients with diagnoses of bipolar disorders. Psychiatr Serv 58(1):85–91. doi:10.1176/appi.ps.58.1.85-a

    Article  PubMed  Google Scholar 

  6. Shine B, McKnight RF, Leaver L, Geddes JR (2015) Long-term effects of lithium on renal, thyroid, and parathyroid function: a retrospective analysis of laboratory data. Lancet 386(9992):461–468. doi:10.1016/S0140-6736(14)61842-0

    Article  CAS  PubMed  Google Scholar 

  7. Kessing LV, Gerds TA, Feldt-Rasmussen B, Andersen PK, Licht RW (2015) use of lithium and anticonvulsants and the rate of chronic kidney disease: a nationwide population-based study. JAMA Psychiatry 72(12):1182–1191. doi:10.1001/jamapsychiatry.2015.1834

    Article  PubMed  Google Scholar 

  8. Chin HJ, Ahn SY, Ryu J, Kim S, Na KY, Kim KW, Chae DW, Kim CH, Kim KI (2014) Renal function and decline in functional capacity in older adults. Age Ageing 43(6):833–838. doi:10.1093/ageing/afu071

    Article  PubMed  Google Scholar 

  9. Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, Dellavalle R, Danaei G, Ezzati M, Fahimi A, Flaxman D, Foreman Gabriel S, Gakidou E, Kassebaum N, Khatibzadeh S, Lim S, Lipshultz SE, London S, Lopez MacIntyre MF, Mokdad AH, Moran A, Moran AE, Mozaffarian D, Murphy T, Naghavi M, Pope C, Roberts T, Salomon J, Schwebel DC, Shahraz S, Sleet DA, Murray Abraham J, Ali MK, Atkinson C, Bartels DH, Bhalla K, Birbeck G, Burstein R, Chen H, Criqui MH, Dahodwala Jarlais, Ding EL, Dorsey ER, Ebel BE, Ezzati M, Fahami Flaxman S, Flaxman AD, Gonzalez-Medina D, Grant B, Hagan H, Hoffman H, Kassebaum N, Khatibzadeh S, Leasher JL, Lin J, Lipshultz SE, Lozano R, Lu Y, Mallinger L, McDermott MM, Micha R, Miller TR, Mokdad AA, Mokdad AH, Mozaffarian D, Naghavi M, Narayan KM, Omer SB, Pelizzari PM, Phillips D, Ranganathan D, Rivara FP, Roberts T, Sampson U, Sanman E, Sapkota A, Schwebel DC, Sharaz S, Shivakoti R, Singh GM, Singh D, Tavakkoli M, Towbin JA, Wilkinson JD, Zabetian A, Murray Abraham J, Ali MK, Alvardo M, Atkinson C, Baddour LM, Benjamin EJ, Bhalla K, Birbeck G, Bolliger I, Burstein R, Carnahan E, Chou D, Chugh SS, Cohen A, Colson KE, Cooper LT, Couser W, Criqui MH, Dabhadkar KC, Dellavalle RP, Jarlais Dicker D, Dorsey ER, Duber H, Ebel BE, Engell RE, Ezzati M, Felson DT, Finucane MM, Flaxman S, Flaxman AD, Fleming T, Foreman Forouzanfar MH, Freedman G, Freeman MK, Gakidou E, Gillum RF, Gonzalez-Medina D, Gosselin R, Gutierrez HR, Hagan H, Havmoeller R, Hoffman H, Jacobsen KH, James SL, Jasrasaria R, Jayarman S, Johns N, Kassebaum N, Khatibzadeh S, Lan Q, Leasher JL, Lim S, Lipshultz SE, London S, Lopez Lozano R, Lu Y, Mallinger L, Meltzer M, Mensah GA, Michaud C, Miller TR, Mock C, Moffitt TE, Mokdad AA, Mokdad AH, Moran A, Naghavi M, Narayan KM, Nelson RG, Olives C, Omer SB, Ortblad K, Ostro B, Pelizzari PM, Phillips D, Raju M, Razavi H, Ritz B, Roberts T, Sacco RL, Salomon J, Sampson U, Schwebel DC, Shahraz S, Shibuya K, Silberberg D, Singh JA, Steenland K, Taylor JA, Thurston GD, Vavilala MS, Vos T, Wagner GR, Weinstock MA, Weisskopf MG, Murray Wulf S, Collaborators USBoD (2013) The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 310(6):591–608. doi:10.1001/jama.2013.13805

    Article  CAS  PubMed  Google Scholar 

  10. Juurlink DN, Mamdani MM, Kopp A, Rochon PA, Shulman KI, Redelmeier DA (2004) Drug-induced lithium toxicity in the elderly: a population-based study. J Am Geriatr Soc 52(5):794–798. doi:10.1111/j.1532-5415.2004.52221.x

    Article  PubMed  Google Scholar 

  11. Kirkham E, Bazire S, Anderson T, Wood J, Grassby P, Desborough JA (2013) Impact of active monitoring on lithium management in Norfolk. Ther Adv Psychopharmacol 3(5):260–265. doi:10.1177/2045125313486510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rej S, Elie D, Mucsi I, Looper KJ, Segal M (2015) Chronic kidney disease in lithium-treated older adults: a review of epidemiology, mechanisms, and implications for the treatment of late-life mood disorders. Drugs Aging 32(1):31–42. doi:10.1007/s40266-014-0234-9

    Article  CAS  PubMed  Google Scholar 

  13. Rej S, Li BW, Looper K, Segal M (2014) Renal function in geriatric psychiatry patients compared to non-psychiatric older adults: effects of lithium use and other factors. Aging Ment health 18(7):847–853. doi:10.1080/13607863.2014.888536

    Article  PubMed  Google Scholar 

  14. Bendz H, Aurell M, Balldin J, Mathe AA, Sjodin I (1994) Kidney damage in long-term lithium patients: a cross-sectional study of patients with 15 years or more on lithium. Nephrol Dial Transplant 9(9):1250–1254

    CAS  PubMed  Google Scholar 

  15. Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, D’Agati VD (2000) Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol 11(8):1439–1448

    CAS  PubMed  Google Scholar 

  16. Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 10(5):329–345

    Article  CAS  PubMed  Google Scholar 

  17. Alsady M, Baumgarten R, Deen PM, de Groot T (2015) Lithium in the kidney: friend and foe? J Am Soc Nephrol. doi:10.1681/asn.2015080907

    Google Scholar 

  18. Can A, Schulze TG, Gould TD (2014) Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 123C:3–16. doi:10.1016/j.pbb.2014.02.004

    Article  CAS  Google Scholar 

  19. Norregaard R, Tao S, Nilsson L, Woodgett JR, Kakade V, Yu AS, Howard C, Rao R (2015) Glycogen synthase kinase 3alpha regulates urine concentrating mechanism in mice. Am J Physiol Renal Physiol 308(6):F650–F660. doi:10.1152/ajprenal.00516.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang Y, Pop IL, Carlson NG, Kishore BK (2012) Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am J Physiol Renal Physiol 302(1):F70–F77. doi:10.1152/ajprenal.00444.2011

    Article  CAS  PubMed  Google Scholar 

  21. Rao R, Patel S, Hao C, Woodgett J, Harris R (2010) GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol 21(3):428–437. doi:10.1681/asn.2009060672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA (2008) Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 105(9):3634–3639. doi:10.1073/pnas.0800001105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Shaw S, Kamsteeg EJ, Vandewalle A, Deen PM (2006) Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 17(4):1063–1072. doi:10.1681/asn.2005080884

    Article  CAS  PubMed  Google Scholar 

  24. Bedford JJ, Weggery S, Ellis G, McDonald FJ, Joyce PR, Leader JP, Walker RJ (2008) Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin J Am Soc Nephrol 3(5):1324–1331. doi:10.2215/CJN.01640408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singer I, Rotenberg D, Puschett JB (1972) Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies. J Clin Investig 51(5):1081–1091. doi:10.1172/jci106900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singer I, Franko EA (1973) Lithium-induced ADH resistance in toad urinary bladders. Kidney Int 3(3):151–159

    Article  CAS  PubMed  Google Scholar 

  27. Forrest JN Jr, Cohen AD, Torretti J, Himmelhoch JM, Epstein FH (1974) On the mechanism of lithium-induced diabetes insipidus in man and the rat. J Clin Investig 53(4):1115–1123. doi:10.1172/JCI107649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Christensen S, Geisler A (1977) Antidiuretic and urinary cyclic AMP response of vasopressin in normal rats and in rats with lithium-polyuria. Acta Pharmacol et Toxicolog 40(3):447–454

    Article  CAS  Google Scholar 

  29. Yamaki M, Kusano E, Tetsuka T, Takeda S, Homma S, Murayama N, Asano Y (1991) Cellular mechanism of lithium-induced nephrogenic diabetes insipidus in rats. Am J Physiol 261(3 Pt 2):F505–F511

    CAS  PubMed  Google Scholar 

  30. Sugawara M, Hashimoto K, Ota Z (1988) Involvement of prostaglandin E2, cAMP, and vasopressin in lithium-induced polyuria. Am J Physiol 254(6 Pt 2):R863–R869

    CAS  PubMed  Google Scholar 

  31. Dousa TP, Christensen S, Kusano E, Yusufi AN (1985) Lithium, cyclic AMP and renal pathophysiology. Acta Pharmacol et Toxicolog 56(Suppl 1):180–189

    CAS  Google Scholar 

  32. Christensen S, Kusano E, Yusufi AN, Murayama N, Dousa TP (1985) Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Investig 75(6):1869–1879. doi:10.1172/jci111901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sim JH, Himmel NJ, Redd SK, Pulous FE, Rogers RT, Black LN, Hong SM, von Bergen TN, Blount MA (2014) Absence of PKC-alpha attenuates lithium-induced nephrogenic diabetes insipidus. PLoS One 9(7):e101753. doi:10.1371/journal.pone.0101753

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fakhri H, Pathare G, Fajol A, Zhang B, Bock T, Kandolf R, Schleicher E, Biber J, Foller M, Lang UE, Lang F (2014) Regulation of mineral metabolism by lithium. Pflugers Arch 466(3):467–475. doi:10.1007/s00424-013-1340-y

    Article  CAS  PubMed  Google Scholar 

  35. Gao Y, Romero-Aleshire MJ, Cai Q, Price TJ, Brooks HL (2013) Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells. Am J Physiol Renal Physiol 305(8):F1201–F1208. doi:10.1152/ajprenal.00153.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kortenoeven ML, Schweer H, Cox R, Wetzels JF, Deen PM (2012) Lithium reduces aquaporin-2 transcription independent of prostaglandins. Am J Physiol Cell Physiol 302(1):C131–C140. doi:10.1152/ajpcell.00197.2011

    Article  CAS  PubMed  Google Scholar 

  37. Bao H, Ge Y, Wang Z, Zhuang S, Dworkin L, Peng A, Gong R (2014) Delayed administration of a single dose of lithium promotes recovery from AKI. J Am Soc Nephrol 25(3):488–500. doi:10.1681/asn.2013040350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vasileva AK, Plotnikov EY, Kazachenko AV, Kirpatovsky VI, Zorov DB (2010) Inhibition of GSK-3beta decreases the ischemia-induced death of renal cells. Bull Exp Biol Med 149(3):303–307

    Article  CAS  PubMed  Google Scholar 

  39. Rybakowski JK, Abramowicz M, Szczepankiewicz A, Michalak M, Hauser J, Czekalski S (2013) The association of glycogen synthase kinase-3beta (GSK-3beta) gene polymorphism with kidney function in long-term lithium-treated bipolar patients. Int J Bipolar Disord 1:8. doi:10.1186/2194-7511-1-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang Y, Huang WC, Wang CY, Tsai CC, Chen CL, Chang YT, Kai JI, Lin CF (2009) Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis. Br J Pharmacol 157(6):1004–1013. doi:10.1111/j.1476-5381.2009.00284.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plotnikov EY, Grebenchikov OA, Babenko VA, Pevzner IB, Zorova LD, Likhvantsev VV, Zorov DB (2013) Nephroprotective effect of GSK-3beta inhibition by lithium ions and delta-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicol Lett 220(3):303–308. doi:10.1016/j.toxlet.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  42. Gong R, Rifai A, Ge Y, Chen S, Dworkin LD (2008) Hepatocyte growth factor suppresses proinflammatory NFkappaB activation through GSK3beta inactivation in renal tubular epithelial cells. J Biol Chem 283(12):7401–7410. doi:10.1074/jbc.M710396200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Havasi A, Gall J, Bonegio R, Li Z, Mao H, Schwartz JH, Borkan SC (2010) GSK3beta promotes apoptosis after renal ischemic injury. J Am Soc Nephrol 21(2):284–294. doi:10.1681/ASN.2009080828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trepiccione F, Pisitkun T, Hoffert JD, Poulsen SB, Capasso G, Nielsen S, Knepper MA, Fenton RA, Christensen BM (2014) Early targets of lithium in rat kidney inner medullary collecting duct include p38 and ERK1/2. Kidney Int. doi:10.1038/ki.2014.107

    PubMed  Google Scholar 

  45. Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, Hao CM (2005) Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 288(4):F642–F649. doi:10.1152/ajprenal.00287.2004

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Nelson RD, Carlson NG, Kamerath CD, Kohan DE, Kishore BK (2009) Potential role of purinergic signaling in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 296(5):F1194–F1201. doi:10.1152/ajprenal.90774.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kotnik P, Nielsen J, Kwon TH, Krzisnik C, Frokiaer J, Nielsen S (2005) Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus. Am J Physiol Renal Physiol 288(5):F1053–F1068. doi:10.1152/ajprenal.00114.2004

    Article  CAS  PubMed  Google Scholar 

  48. Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PM, Rossier BC, Hummler E (2011) alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 22(2):253–261. doi:10.1681/ASN.2010070734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kortenoeven ML, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JF, Deen PM (2009) Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 76(1):44–53. doi:10.1038/ki.2009.91

    Article  CAS  PubMed  Google Scholar 

  50. Nielsen J, Kwon TH, Christensen BM, Frokiaer J, Nielsen S (2008) Dysregulation of renal aquaporins and epithelial sodium channel in lithium-induced nephrogenic diabetes insipidus. Semin Nephrol 28(3):227–244. doi:10.1016/j.semnephrol.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  51. Nielsen J, Kwon TH, Frokiaer J, Knepper MA, Nielsen S (2006) Lithium-induced NDI in rats is associated with loss of alpha-ENaC regulation by aldosterone in CCD. Am J Physiol Renal Physiol 290(5):F1222–F1233. doi:10.1152/ajprenal.00321.2005

    Article  CAS  PubMed  Google Scholar 

  52. Nielsen J, Kwon TH, Praetorius J, Kim YH, Frokiaer J, Knepper MA, Nielsen S (2003) Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 285(6):F1198–F1209. doi:10.1152/ajprenal.00118.2003

    Article  CAS  PubMed  Google Scholar 

  53. Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS (2004) Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 15(11):2836–2843. doi:10.1097/01.asn.0000143476.93376.04

    Article  CAS  PubMed  Google Scholar 

  54. Laursen UH, Pihakaski-Maunsbach K, Kwon TH, Ostergaard Jensen E, Nielsen S, Maunsbach AB (2004) Changes of rat kidney AQP2 and Na, K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 97(1):e1–e16. doi:10.1159/000077593

    Article  CAS  PubMed  Google Scholar 

  55. Michimata M, Fujita S, Araki T, Mizukami K, Kazama I, Muramatsu Y, Suzuki M, Kimura T, Sasaki S, Imai Y, Matsubara M (2003) Reverse pharmacological effect of loop diuretics and altered rBSC1 expression in rats with lithium nephropathy. Kidney Int 63(1):165–171. doi:10.1046/j.1523-1755.2003.00738.x

    Article  CAS  PubMed  Google Scholar 

  56. Sanches TR, Volpini RA, Massola Shimizu MH, Braganca AC, Oshiro-Monreal F, Seguro AC, Andrade L (2012) Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302(1):F216–F225. doi:10.1152/ajprenal.00439.2010

    Article  CAS  PubMed  Google Scholar 

  57. Kim GH, Choi NW, Jung JY, Song JH, Lee CH, Kang CM, Knepper MA (2008) Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2. Am J Physiol Renal Physiol 294(4):F702–F709. doi:10.1152/ajprenal.00366.2007

    Article  CAS  PubMed  Google Scholar 

  58. Blount MA, Sim JH, Zhou R, Martin CF, Lu W, Sands JM, Klein JD (2010) Expression of transporters involved in urine concentration recovers differently after cessation of lithium treatment. Am J Physiol Renal Physiol 298(3):F601–F608. doi:10.1152/ajprenal.00424.2009

    Article  CAS  PubMed  Google Scholar 

  59. Bedford JJ, Leader JP, Jing R, Walker LJ, Klein JD, Sands JM, Walker RJ (2008) Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 294(4):F812–F820. doi:10.1152/ajprenal.00554.2007

    Article  CAS  PubMed  Google Scholar 

  60. Hwang GS, Yang JY, Ryu do H, Kwon TH (2010) Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics. Am J Physiol Renal Physiol 298(2):F461–F470. doi:10.1152/ajprenal.00389.2009

    Article  CAS  PubMed  Google Scholar 

  61. Kim YH, Kwon TH, Christensen BM, Nielsen J, Wall SM, Madsen KM, Frokiaer J, Nielsen S (2003) Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 285(6):F1244–F1257. doi:10.1152/ajprenal.00176.2003

    Article  CAS  PubMed  Google Scholar 

  62. Chmielnicka J, Nasiadek M (2003) The trace elements in response to lithium intoxication in renal failure. Ecotoxicol Environ Saf 55(2):178–183

    Article  CAS  PubMed  Google Scholar 

  63. Ida S, Yokota M, Ueoka M, Kiyoi K, Takiguchi Y (2001) Mild to severe lithium-induced nephropathy models and urine N-acetyl-beta-D-glucosaminidase in rats. Methods Find Exp Clin Pharmacol 23(8):445–448

    Article  CAS  PubMed  Google Scholar 

  64. Rojek A, Nielsen J, Brooks HL, Gong H, Kim YH, Kwon TH, Frokiaer J, Nielsen S (2005) Altered expression of selected genes in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 288(6):F1276–F1289. doi:10.1152/ajprenal.00305.2004

    Article  CAS  PubMed  Google Scholar 

  65. Li W, Zhang Y, Bouley R, Chen Y, Matsuzaki T, Nunes P, Hasler U, Brown D, Lu HA (2011) Simvastatin enhances aquaporin-2 surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am J Physiol Renal Physiol 301(2):F309–F318. doi:10.1152/ajprenal.00001.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anai H, Ueta Y, Serino R, Nomura M, Nakashima Y, Yamashita H (2001) Activation of hypothalamic neuronal nitric oxide synthase in lithium-induced diabetes insipidus rats. Psychoneuroendocrinology 26(2):109–120

    Article  CAS  PubMed  Google Scholar 

  67. Bosche B, Molcanyi M, Noll T, Rej S, Zatschler B, Doeppner TR, Hescheler J, Muller DJ, Macdonald RL, Hartel FV (2016) A differential impact of lithium on endothelium-dependent but not on endothelium-independent vessel relaxation. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2016.02.004

    PubMed  Google Scholar 

  68. Lee YJ, Lee JE, Choi HJ, Lim JS, Jung HJ, Baek MC, Frokiaer J, Nielsen S, Kwon TH (2011) E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal. Am J Physiol Renal Physiol 301(4):F883–F896. doi:10.1152/ajprenal.00117.2011

    Article  CAS  PubMed  Google Scholar 

  69. Anai H, Ueta Y, Serino R, Nomura M, Kabashima N, Shibuya I, Takasugi M, Nakashima Y, Yamashita H (1997) Upregulation of the expression of vasopressin gene in the paraventricular and supraoptic nuclei of the lithium-induced diabetes insipidus rat. Brain Res 772(1–2):161–166

    Article  CAS  PubMed  Google Scholar 

  70. Carney SL, Ray C, Gillies AH (1996) Mechanism of lithium-induced polyuria in the rat. Kidney Int 50(2):377–383

    Article  CAS  PubMed  Google Scholar 

  71. Dousa TP (1974) Cellular action of antidiuretic hormone in nephrogenic diabetes insipidus. Mayo Clin Proc 49(3):188–199

    CAS  PubMed  Google Scholar 

  72. Hochman S, Gutman Y (1974) Lithium: aDH antagonism and ADH independent action in rats with diabetes insipidus. Eur J Pharmacol 28(1):100–107

    Article  CAS  PubMed  Google Scholar 

  73. Balment RJ, Jones IC, Henderson IW (1977) Time course of lithium-induced alterations in renal and endocrine function in normal and Brattleboro rats with hypothalamic diabetes insipidus. Br J Pharmacol 59(4):627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jacobsen NO, Ottosen PD, Christensen S (1988) Early renal changes in lithium-treated normal and vasopressin-deficient rats. APMIS Suppl 4:56–65

    CAS  PubMed  Google Scholar 

  75. Christensen S, Hansen BB, Faarup P (1982) Functional and structural changes in the rat kidney by long-term lithium treatment. Renal Physiol 5(2):95–104

    CAS  PubMed  Google Scholar 

  76. Christensen S (1983) Effects of lithium on water intake and renal concentrating ability in rats with vasopressin-deficient diabetes insipidus (Brattleboro strain). Pflugers Arch 396(2):106–109

    Article  CAS  PubMed  Google Scholar 

  77. Ray C, Morgan T, Carney S (1983) The mechanism of polyuria in rats pretreated with lithium studies by in vitro microperfusion. Clin Exp Pharmacol Physiol 10(2):153–160

    Article  CAS  PubMed  Google Scholar 

  78. Mitsui T, Ogura T, Ogawa N, Ota Z (1985) Reduction of specific arginine-vasopressin binding sites of renal medulla membranes in lithium treated rats. Res Commun Chem Pathol Pharmacol 50(2):201–208

    CAS  PubMed  Google Scholar 

  79. Trepiccione F, Christensen BM (2010) Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings. J Nephrol 23(Suppl 16):S43–S48

    PubMed  Google Scholar 

  80. Kortenoeven ML, Pedersen NB, Miller RL, Rojek A, Fenton RA (2013) Genetic ablation of aquaporin-2 in the mouse connecting tubules results in defective renal water handling. J Physiol 591(Pt 8):2205–2219. doi:10.1113/jphysiol.2012.250852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Christensen BM, Kim YH, Kwon TH, Nielsen S (2006) Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct. Am J Physiol Renal Physiol 291(1):F39–F48. doi:10.1152/ajprenal.00383.2005

    Article  CAS  PubMed  Google Scholar 

  82. Nielsen J, Kwon TH, Praetorius J, Frokiaer J, Knepper MA, Nielsen S (2006) Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am J Physiol Renal Physiol 290(2):F438–F449. doi:10.1152/ajprenal.00158.2005

    Article  CAS  PubMed  Google Scholar 

  83. Christensen BM, Marples D, Kim YH, Wang W, Frokiaer J, Nielsen S (2004) Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol 286(4):C952–C964. doi:10.1152/ajpcell.00266.2003

    Article  CAS  PubMed  Google Scholar 

  84. Kwon TH, Laursen UH, Marples D, Maunsbach AB, Knepper MA, Frokiaer J, Nielsen S (2000) Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 279(3):F552–F564

    CAS  PubMed  Google Scholar 

  85. de Braganca AC, Moyses ZP, Magaldi AJ (2010) Carbamazepine can induce kidney water absorption by increasing aquaporin 2 expression. Nephrol Dial Transplant 25(12):3840–3845. doi:10.1093/ndt/gfq317

    Article  PubMed  CAS  Google Scholar 

  86. Suga H, Nagasaki H, Kondo TA, Okajima Y, Suzuki C, Ozaki N, Arima H, Yamamoto T, Ozaki N, Akai M, Sato A, Uozumi N, Inoue M, Hasegawa M, Oiso Y (2008) Novel treatment for lithium-induced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene. Endocrinology 149(11):5803–5810. doi:10.1210/en.2007-1806

    Article  CAS  PubMed  Google Scholar 

  87. Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Investig 95(4):1838–1845. doi:10.1172/jci117863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paul S, Dey A (2008) Wnt signaling and cancer development: therapeutic implication. Neoplasma 55(3):165–176

    CAS  PubMed  Google Scholar 

  89. Jung HJ, Kim SY, Choi HJ, Park EJ, Lim JS, Frokiaer J, Nielsen S, Kwon TH (2015) Tankyrase-mediated beta-catenin activity regulates vasopressin-induced AQP2 expression in kidney collecting duct mpkCCDc14 cells. Am J Physiol Renal Physiol 308(5):F473–F486. doi:10.1152/ajprenal.00052.2014

    Article  CAS  PubMed  Google Scholar 

  90. Promeneur D, Kwon TH, Yasui M, Kim GH, Frokiaer J, Knepper MA, Agre P, Nielsen S (2000) Regulation of AQP6 mRNA and protein expression in rats in response to altered acid-base or water balance. Am J Physiol Renal Physiol 279(6):F1014–F1026

    CAS  PubMed  Google Scholar 

  91. Kling MA, Fox JG, Johnston SM, Tolkoff-Rubin NE, Rubin RH, Colvin RB (1984) Effects of long-term lithium administration on renal structure and function in rats. A distinctive tubular lesion. Lab Invest 50(5):526–535

    CAS  PubMed  Google Scholar 

  92. Dorup J, Ottosen PD, Christensen S (1988) Lithium-induced structural changes in the cortical distal nephron localized by computer-assisted three-dimensional reconstruction. J Ultrastruct Mol Struct Res 100(3):212–223

    Article  CAS  PubMed  Google Scholar 

  93. de Groot T, Alsady M, Jaklofsky M, Otte-Holler I, Baumgarten R, Giles RH, Deen PM (2014) Lithium causes G2 arrest of renal principal cells. J Am Soc Nephrol 25(3):501–510. doi:10.1681/ASN.2013090988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Walker RJ, Leader JP, Bedford JJ, Gobe G, Davis G, Vos FE, deJong S, Schollum JB (2013) Chronic interstitial fibrosis in the rat kidney induced by long-term (6-mo) exposure to lithium. Am J Physiol Renal Physiol 304(3):F300–F307. doi:10.1152/ajprenal.00182.2012

    Article  CAS  PubMed  Google Scholar 

  95. Nciri R, Allagui MS, Bourogaa E, Saoudi M, Murat JC, Croute F, Elfeki A (2012) Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J Physiol Biochem 68(1):11–18. doi:10.1007/s13105-011-0113-3

    Article  CAS  PubMed  Google Scholar 

  96. Efrati S, Averbukh M, Berman S, Feldman L, Dishy V, Kachko L, Weissgarten J, Golik A, Averbukh Z (2005) N-Acetylcysteine ameliorates lithium-induced renal failure in rats. Nephrol Dial Transplant 20(1):65–70. doi:10.1093/ndt/gfh573

    Article  CAS  PubMed  Google Scholar 

  97. Rej S, Shulman K, Herrmann N, Harel Z, Fischer HD, Fung K, Gruneir A (2014) Prevalence and correlates of renal disease in older lithium users: a population-based study. Am J Geriatr Psychiatry. doi:10.1016/j.jagp.2014.01.015

    Google Scholar 

  98. Thomsen K, Olesen OV (1978) Lithium-induced acute renal failure in the rat. Toxicol Appl Pharmacol 45(1):155–161

    Article  CAS  PubMed  Google Scholar 

  99. Laliberte V, Yu C, Rej S (2015) Acute renal and neurotoxicity in older lithium users: how can we manage and prevent these events in patients with late-life mood disorders? J Psychiatry Neurosci 40(4):E29–E30

    Article  PubMed  PubMed Central  Google Scholar 

  100. Talab SS, Elmi A, Emami H, Nezami BG, Assa S, Ghasemi M, Tavangar SM, Dehpour AR (2012) Protective effects of acute lithium preconditioning against renal ischemia/reperfusion injury in rat: role of nitric oxide and cyclooxygenase systems. Eur J Pharmacol 681(1–3):94–99. doi:10.1016/j.ejphar.2012.01.042

    Article  CAS  PubMed  Google Scholar 

  101. Rej S, Looper K, Segal M (2013) The effect of serum lithium levels on renal function in geriatric outpatients: a retrospective longitudinal study. Drugs Aging. doi:10.1007/s40266-013-0068-x

    PubMed  Google Scholar 

Download references

Acknowledgments

Soham Rej was funded by the Canadian Institutes of Health Research (CIHR) Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soham Rej.

Ethics declarations

Conflict of interest

Dr. Herrmann has received research funding from Lundbeck, Roche, Pfizer, Transition Therapeutics, and honoraria from AbbVie and Eli Lilly. Dr. Muller has received research funding from Assurex Health and Lundbeck. The remaining authors report no financial or other conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rej, S., Pira, S., Marshe, V. et al. Molecular mechanisms in lithium-associated renal disease: a systematic review. Int Urol Nephrol 48, 1843–1853 (2016). https://doi.org/10.1007/s11255-016-1352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1352-6

Keywords

Navigation