Skip to main content
Log in

Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

M-containing tungsten oxides bronzes (M = Ti, Nb or V) with hexagonal tungsten bronze (HTB) structure have been investigated as catalysts for the aerobic transformation of glycerol and methanol. The catalysts were prepared hydrothermally and characterized by several physico chemical techniques, i.e. N2-adsorption, XRD, Raman spectroscopy and temperature programmed desorption of ammonia. Interesting variations in the thermal stability of the HTB-framework were observed according to the element introduced into the oxide structure. In addition, the incorporation of Ti and Nb modified the acid features of the hexagonal tungsten oxides, whereas V introduced new redox sites. The catalytic results for the aerobic transformation of glycerol and methanol in terms of conversion and nature of reaction products are discussed on the basis of the physico-chemical characteristics of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Cl G, Lugmair AF, Jr Volpe, Weingand Th (2003) Top Catal 23:5–22

    Article  CAS  Google Scholar 

  2. Wachs IE, Routray K (2012) ACS Catal 2:1235–1246

    Article  CAS  Google Scholar 

  3. Macht J, Iglesia E (2008) Phys Chem Chem Phys 10:5331–5343

    Article  CAS  Google Scholar 

  4. Chieregato A, Lopez Nieto JM, Cavani F (2015) Coord Chem Rev. doi:10.1016/j.ccr.2014.12.003

    Google Scholar 

  5. Greenblatt Martha (1988) Chem Rev 88:31–53

    Article  CAS  Google Scholar 

  6. Guo JD, Whittingham MS (1993) Int J Mod Phys B 7:4145

    Article  CAS  Google Scholar 

  7. Rödel E, Timpe O, Trunschke A, Zenkovets GA, Kryukova GN, Schlögl R, Ressler T (2007) Catal Today 126:112–118

    Article  Google Scholar 

  8. Mestl G (2006) Top Catal 38:69–98

    Article  CAS  Google Scholar 

  9. Botella P, Solsona B, López Nieto JM, Concepción P, Jordá JL, Doménech Carbó MT (2010) Catal Today 158:162–169

    Article  CAS  Google Scholar 

  10. Blanch Raga N, Soriano MD, Palomares AE, Concepción P, Martínez-Triguero J, López Nieto JM (2013) Appl Catal B 130–131:36–43

    Article  Google Scholar 

  11. Tsuji Y Koyasu (2002) J Am Chem Soc 124:5608–5610

    Article  CAS  Google Scholar 

  12. Millet JMM, Roussel H, Pigamo A, Dubois JL, Jumas JC (2002) Appl Catal A 232:77–92

    Article  CAS  Google Scholar 

  13. Sadakane M, Endo K, Kodato K, Ishikawa S, Murayama T, Ueda W (2013) Eur J Inorg Chem 10–11:1731–1736

    Article  Google Scholar 

  14. Concepcion P, Hernandez S, Lopez Nieto JM (2011) Appl Catal A 391:92–101

    Article  CAS  Google Scholar 

  15. Sanchez Sanchez MC, Girgsdies F, Jastak M, Kube P, Schlogl R, Trunschke A (2012) Angew. Chem Int Ed 51:7194–7197

    Article  CAS  Google Scholar 

  16. Li X, Buttrey D, Blom D, Vogt T (2011) Top Catal 54:614

    Article  CAS  Google Scholar 

  17. Sadakane M, Watanabe N, Katou T, Nodasaka Y, Ueda W (2007) Angew Chem Int Ed 46:1493

    Article  CAS  Google Scholar 

  18. Botella P, Solsona B, García-González E, González-Calbet JM, López Nieto JM (2007) Chem Commun 47:5040–5042

    Article  Google Scholar 

  19. Wang L, Zhan J, Fan W, Cui G, Sun H, Zhuo L, Zhao X, Tang B (2010) Chem Commun 46:8833–8835

    Article  CAS  Google Scholar 

  20. Miseki Y, Kudo A (2011) ChemSusChem 4:245–251

    CAS  Google Scholar 

  21. Soriano MD, Concepción P, López Nieto JM, Cavani F, Guidetti S, Trevisanut C (2011) Green Chem 13:2954–2962

    Article  CAS  Google Scholar 

  22. Chieregato A, Basile F, Concepción P, Guidetti S, Liosi G, Soriano MD, Trevisanut C, Cavani F, López Nieto JM (2012) Catal Today 197:58–65

    Article  CAS  Google Scholar 

  23. Chieregato A, Soriano MD, Basile F, Liosi G, Zamora S, Concepción P, Cavani F, López Nieto JM (2014) Appl Catal B 150–151:37–46

    Article  Google Scholar 

  24. Chieregato A, Soriano MD, García-González E, Puglia G, Basile F, Concepción P, Bandinelli C, López Nieto JM, Cavani F (2015) ChemSusChem 8:398–406

    Article  CAS  Google Scholar 

  25. García-González E, Soriano MD, Urones-Garrote E, López Nieto JM (2014) Dalton Trans 43:14644–14652

    Article  Google Scholar 

  26. Liu Y, Shrestha S, Mustain WE (2012) ACS Catal 2:456–463

    Article  CAS  Google Scholar 

  27. Zhang Zh, Liu J, Gu J, Su L, Cheng L (2014) Energy Environ Sci 7:2535–2558

    Article  CAS  Google Scholar 

  28. Tatibouët JM (1997) Appl Catal A 148:213–252

    Article  Google Scholar 

  29. Badlani M, Wachs IE (2001) Catal Lett 75:137–149

    Article  CAS  Google Scholar 

  30. Rajagopal S, Nataraj D, Mangalaraj D, Djaoued Y, Robichaaud J, Kzyzhun OYu (2009) Nanoscale Res 4:1335–1342

    Article  CAS  Google Scholar 

  31. Szilagyi IM, Madarasz J, Pokol G, Kiraly P, Tarkanyi G, Saukko S, Mizsei J, Toth AL, Szabo A, Varga-Josepovits K (2008) Chem Mater 20:4116

    Article  CAS  Google Scholar 

  32. Ekstrom T, Nygren M (1972) Acta Chem Scand 26:1827–1835

    Article  CAS  Google Scholar 

  33. Ekstrom T, Nygren M (1972) Acta Chem Scand 26:1836–1842

    Article  CAS  Google Scholar 

  34. Ekstrom T (1972) Acta Chem Scand 26:1843–1846

    Article  CAS  Google Scholar 

  35. Liu J, Zhao Z, Xu C, Duan A, Jiang G, Gao J, Lin W, Wachs I (2008) Sci China Ser B: Chem 51:551–561

    Article  CAS  Google Scholar 

  36. Griffith ChS, Luca V, Hanna JV, Pike KJ, Smith ME, Thorogood GS (2009) Inorg Chem 48:5648–5662

    Article  CAS  Google Scholar 

  37. Hutchings GJ, Hunter R, van Rensburg LJ (1988) Appl Catal 41:253–259

    Article  CAS  Google Scholar 

  38. Massa M, Andersson A, Finocchio E, Busca G (2013) J Catal 307:170–184

    Article  CAS  Google Scholar 

  39. Shen L, Yin H, Wang A, Lu X, Zhang C (2014) Chem Eng J 244:168–177

    Article  CAS  Google Scholar 

  40. Anpo M, Tanahashi, Kubokawa Y (1982) J Phys Chem 86:1

    Article  CAS  Google Scholar 

  41. Sojka Z, Che M (1995) J Phys Chem 99:5418

    Article  CAS  Google Scholar 

  42. Dubois JL, Duquenne C, Hölderich W (2006) Eur Patent 1 874 720; assigned to Arkema France

Download references

Acknowledgments

JMLN and MDS thank the Spanish Government-MINECO (CTQ2012-37925-C03-1 and program Severo Ochoa SEV-2012-0267). CIRI and INSTM are acknowledged for the grant to AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. López Nieto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soriano, M.D., Chieregato, A., Zamora, S. et al. Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Top Catal 59, 178–185 (2016). https://doi.org/10.1007/s11244-015-0440-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0440-7

Keywords

Navigation