Skip to main content
Log in

MoVW mixed metal oxides catalysts for acrylic acid production: from industrial catalysts to model studies

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

(MoVW)5O14-type oxides were identified as the active and selective components in industrial acrylic acid catalysts. Tungsten is suggested to play an important role as a structural promoter in the formation and stabilization of this oxide. Vanadium is responsible for high catalytic activities but is detrimental for the stability of this oxide at the necessary high concentrations for optimum catalytic performance. The activity of mixed MoVW oxide catalysts for methanol, propene, and acrolein partial oxidation could be considerably improved, when the amount of the (MoVW)5O14-type oxide was increased by thermal annealing. A model is proposed on the basis of the correlation between Raman wavenumber and bond order and degree of reduction, which explains the observed different selectivities of MoO3−x and the (MoVW)5O14-type oxides in terms of metal–oxygen bond strengths, i.e. oxygen basicity and oxygen lability, respectively. According to this model, the (MoVW)5O14 mixed oxide catalyses partial oxidation because of its intermediate C–H activation and oxygen releasing oxygen functionalities. However, these (MoVW)5O14-type industrial oxidation catalysts are heterogeneous and highly complex systems. Their physicochemical characterization also revealed that their chemical bulk and surface compositions vary with thermal activation and oxygen potential. A core-shell model is suggested to describe the active catalyst state, the shell providing a high number of active centers, the core high electronic conductivity and ion mobility. The fact that the surface composition of such catalysts is considerably different from their bulk compositions, most probably implies that the “molecular structure” at their surface differs too considerably from their bulk crystal structure. Hence, the posed question about the active catalyst structure and its relation to its catalytic performance cannot unambiguously be explained by the crystallographic structure, but still remains unsolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Grasselli (1999) Catal. Today 49 141 Occurrence Handle1:CAS:528:DyaK1MXps1Kgug%3D%3D Occurrence Handle10.1016/S0920-5861(98)00418-0

    Article  CAS  Google Scholar 

  2. P. Mars D.W. Krevelen Particlevan (1954) Chem. Eng. Sci. Special Suppl. 3 41 Occurrence Handle1:CAS:528:DyaG28Xks1Wq

    CAS  Google Scholar 

  3. K. Brückman R. Grabowski J. Haber A. Mazurkiewicz J. Slocynski T. Wiltowski (1987) J. Catal. 104 71 Occurrence Handle10.1016/0021-9517(87)90337-X

    Article  Google Scholar 

  4. A.B. Anderson D.W. Ewing Y. Kim R.K. Grasselli J. D. Durrington J.F. Brazdil (1985) J. Catal. 96 222 Occurrence Handle1:CAS:528:DyaL28Xhs1Ors78%3D Occurrence Handle10.1016/0021-9517(85)90375-6

    Article  CAS  Google Scholar 

  5. A.R. Adams T.J. Jennings (1964) J. Catal. 3 549 Occurrence Handle1:CAS:528:DyaF2MXos1Oj Occurrence Handle10.1016/0021-9517(64)90054-5

    Article  CAS  Google Scholar 

  6. J. Haber, in: Handbook of Heterogeneous Catalysis, Vol. 5, eds. G. Ertl, H. Knözinger and J. Weitkamp (Wiley-VCh, Weinheim, 1997), 2253ff

  7. T.V. Andrushkevich (1997) Kinet. Catal. 38 289

    Google Scholar 

  8. T.G. Kuznetsova G.K. Boreskov T.V. Andrushkevich (1979) React. Kinet. Catal. Lett. 12 531 Occurrence Handle1:CAS:528:DyaL3cXktVOls7Y%3D Occurrence Handle10.1007/BF02061767

    Article  CAS  Google Scholar 

  9. T.V. Andrushkevich L.M. Plyasova T.G. Kuzetsova (1979) React. Kinet. Catal. Lett. 12 463 Occurrence Handle1:CAS:528:DyaL3cXitFCrt7Y%3D Occurrence Handle10.1007/BF02061755

    Article  CAS  Google Scholar 

  10. J. Tichy J. Kusta J. Venkl (1974) Coll. Czechos. Chem. Commun. 39 1797 Occurrence Handle1:CAS:528:DyaE2cXltlGnsr8%3D

    CAS  Google Scholar 

  11. V.C. Malshe S.B. Chandalia (1977) J. Appl. Chem. Biotechnol. 27 575 Occurrence Handle1:CAS:528:DyaE1cXkt1ent70%3D Occurrence Handle10.1002/jctb.5020270502

    Article  CAS  Google Scholar 

  12. R.K. Grasselli J.D. Burrington (1981) Adv. Catal. 30 133 Occurrence Handle1:CAS:528:DyaL38Xht1egsb8%3D Occurrence Handle10.1016/S0360-0564(08)60327-2

    Article  CAS  Google Scholar 

  13. J. Tichy, J. Kusta and J. Machek, Coll. Czechos. Chem. Commun. (1982) 698.

  14. M. Ai (1986) Appl. Catal. 27 167 Occurrence Handle1:CAS:528:DyaL28Xmt1OgtLk%3D Occurrence Handle10.1016/S0166-9834(00)81055-6

    Article  CAS  Google Scholar 

  15. L.M. Plyasova L.P. Solov´eva G.N. Kryukova T.V. Andrushkevich (1990) Kinet. Catal. 31 1253

    Google Scholar 

  16. T.V. Andrushkevich V.M. Bondareva G.Y. Popova L.M. Plyasova (1992) Stud. Surf. Sci., Catal. 72 91 Occurrence Handle1:CAS:528:DyaK3sXnsVWr

    CAS  Google Scholar 

  17. T.V. Andrushkevich, V.M. Bondareva, G.Ya. Popova and L.M. Plyasova, in: Surface Science and Catalysis: New Developments in Selective Oxidation by Heterogeneous Catalysis, Vol. 72, eds. P. Ruiz and B. Delmon (Elsevier, Amsterdam, 1992), p. 91

  18. T.V. Andrushkevich (1993) Catal. Rev.-Sci. Eng. 35 213 Occurrence Handle1:CAS:528:DyaK3sXkslCqu7s%3D

    CAS  Google Scholar 

  19. S. Breiter M. Estenfelder H.-G. Lintz A. Tenten H. Hibst (1996) Appl. Catal. A 134 81 Occurrence Handle1:CAS:528:DyaK28XmvFOm Occurrence Handle10.1016/0926-860X(95)00193-X

    Article  CAS  Google Scholar 

  20. G. Mestl Ch. Linsmeier R. Gottschall M. Dieterle J. Find D. Herein J. Jäger Y. Uchida R. Schlögl (2000) J. Mol. Catal. A: Gen. 27 455

    Google Scholar 

  21. M. Dieterle G. Mestl J. Jäger Y. Uchida R. Schlögl (2001) J. Mol. Catal. A 174 169 Occurrence Handle1:CAS:528:DC%2BD3MXmvFCjsbw%3D Occurrence Handle10.1016/S1381-1169(01)00074-7

    Article  CAS  Google Scholar 

  22. J.C. Petzoldt, H. Böhnke, J. Gaube and H. Hibst, 4th World Congress on Oxidation Catalysis, Potsdam, Germany, September 16–21, 2001

  23. R. Böhling A. Drochner M. Fehlings D. Knig H. Vogel (1999) Chem. Ing. Technol. 71 3199

    Google Scholar 

  24. H. Vogel R. Böhling H. Hibst (1999) Catal. Lett. 62 71 Occurrence Handle1:CAS:528:DyaK1MXnsFSrtLs%3D Occurrence Handle10.1023/A:1019014114897

    Article  CAS  Google Scholar 

  25. M. Dieterle, PhD Thesis (Technical University Berlin, 2001)

  26. M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Max-Planck-Institut für Plasmaphysik, Garching, 1997)

  27. O. Ovsitser Y. Uchida G. Mestl G. Weinberg A. Blume J. Jäger M. Dieterle H. Hibst R. Schlögl (2002) J. Mol. Catal. A Chem. 185 291 Occurrence Handle1:CAS:528:DC%2BD38XkvVWrsbo%3D Occurrence Handle10.1016/S1381-1169(02)00128-0

    Article  CAS  Google Scholar 

  28. A. Blume, PhD Thesis (Technical University Berlin, 2001)

  29. H. Werner O. Timpe D. Herein Y. Uchida N. Pfänder U. Wild R. Schlögl H. Hibst (1997) Catal. Lett. 44 153 Occurrence Handle1:CAS:528:DyaK2sXkvFCnt7g%3D Occurrence Handle10.1023/A:1018901830923

    Article  CAS  Google Scholar 

  30. L. Kihlborg (1963) Ark. Kemi 21 357 Occurrence Handle1:CAS:528:DyaF2cXlsFQ%3D

    CAS  Google Scholar 

  31. A.A. Bolzan B.J. Kenned C.J. Howard (1995) Aust. J. Chem. 48 1473 Occurrence Handle1:CAS:528:DyaK2MXnvVyhtro%3D

    CAS  Google Scholar 

  32. T. Ekström M. Nygren (1972) Acta Chem. Scand. 26 1836 Occurrence Handle10.3891/acta.chem.scand.26-1836

    Article  Google Scholar 

  33. L. Kihlborg (1963) Ark. Kemi 21 427 Occurrence Handle1:CAS:528:DyaF2cXls12nsg%3D%3D

    CAS  Google Scholar 

  34. N. Yamazoe L. Kihlborg (1975) Acta Cryst. B31 1666 Occurrence Handle1:CAS:528:DyaE2MXks12mtbc%3D

    CAS  Google Scholar 

  35. G. Mestl (2002) J. Raman Spectrosc. 33 333 Occurrence Handle1:CAS:528:DC%2BD38XktFCns70%3D Occurrence Handle10.1002/jrs.843

    Article  CAS  Google Scholar 

  36. P.F. Cornaz J.H.C. Hooff Particlevan F.J. Plujim G.C.A. Schuit (1996) Discuss. Faraday Soc. 41 290 Occurrence Handle10.1039/df9664100290

    Article  Google Scholar 

  37. F.D. Hardcastle I.E. Wachs (1990) J. Raman Spectrosc. 21 683 Occurrence Handle1:CAS:528:DyaK3cXmt1SntL4%3D Occurrence Handle10.1002/jrs.1250211009

    Article  CAS  Google Scholar 

  38. G. Mestl P. Ruiz B. Delmon H. Knözinger (1994) J. Phys. Chem. 98 11269 Occurrence Handle1:CAS:528:DyaK2cXms1Cmur8%3D Occurrence Handle10.1021/j100095a007

    Article  CAS  Google Scholar 

  39. R. Tokarz-Sobieraj K. Hermann M. Witko A. Blume G. Mestl R. Schlögl (2001) Surf. Sci. 489 107 Occurrence Handle1:CAS:528:DC%2BD3MXmtFSlt7s%3D Occurrence Handle10.1016/S0039-6028(01)01169-4

    Article  CAS  Google Scholar 

  40. J.M. Aigler V.B. Kazansky M. Houalla A. Proctor D.M. Hercules (1995) J. Phys. Chem. 99 11489 Occurrence Handle1:CAS:528:DyaK2MXms1Ojsbw%3D Occurrence Handle10.1021/j100029a029

    Article  CAS  Google Scholar 

  41. W. Grünert A. Yu Stakheev R. Feldhaus K. Anders E.S. Shpiro K.M. Minachev (1991) J. Phys. Chem. 95 1323 Occurrence Handle10.1021/j100156a054

    Article  Google Scholar 

  42. J. Mendialdua Casanova (1995) J. Electron Spectrosc. Relat. Phenom. 71 49 Occurrence Handle10.1016/0368-2048(94)02291-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Mestl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestl, G. MoVW mixed metal oxides catalysts for acrylic acid production: from industrial catalysts to model studies. Top Catal 38, 69–82 (2006). https://doi.org/10.1007/s11244-006-0072-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0072-z

Keywords

Navigation