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Abstract In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task
of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation
in neuroscience to the new territory of computational neuroscience. He presents the
model to mechanism mapping (3M) criterion as a condition for a model’s explanatory
adequacy. This mechanistic approach is intended to replace earlier accounts which
posited a level of computational analysis conceived as distinct and autonomous from
underlying mechanistic details. In this paper I discuss work in computational neuro-
science that creates difficulties for the mechanist project. Carandini and Heeger (Nat
Rev Neurosci 13:51–62, 2012) propose that many neural response properties can be
understood in terms of canonical neural computations. These are “standard computa-
tional modules that apply the same fundamental operations in a variety of contexts.”
Importantly, these computations can have numerous biophysical realisations, and so
straightforward examination of the mechanisms underlying these computations carries
little explanatory weight. Through a comparison between this modelling approach and
minimal models in other branches of science, I argue that computational neuroscience
frequently employs a distinct explanatory style, namely, efficient coding explanation.
Such explanations cannot be assimilated into the mechanistic framework but do bear
interesting similarities with evolutionary and optimality explanations elsewhere in
biology.
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1 Introduction

If any perspective in philosophy of neuroscience can today claim to be dominant, it
is the mechanistic one. The new mechanists have successfully displaced their reduc-
tionist and eliminativist predecessors, and have demonstrated the virtues of the mech-
anistic approach when discussing numerous examples across the board from molec-
ular to behavioural neuroscience.1 Yet before the mechanist orthodoxy becomes so
entrenched as to be untouchable, it is worth considering its limitations (cf. Chemero and
Silberstein 2008; Weiskopf 2011a). A particular point of controversy is over whether
the new mechanists successfully describe explanatory practice in all subfields of neu-
roscience, from the molecular to the behavioural, and whether mechanistic norms of
model building which emphasise decomposition into small working parts are appro-
priate for the “higher level” branches of systems and cognitive neuroscience, and to
the methodologically diverse branches of computational neuroscience.

The term “computational neuroscience” labels a broad research area which uses
applied mathematics and computer science to analyze and simulate neural systems.
The techniques and explanatory practices of this field are discussed in detail by
Kaplan (2011).2 In particular, Kaplan argues that models in computational neu-
roscience should be subject to the same mechanistic explanatory norms that have
been formulated for other branches of neuroscience (Craver 2006, 2007). In other
words, computational neuroscience should not be treated as a distinct field with its
own explanatory norms: computational explanation in neuroscience is a species of
mechanistic explanation (p. 339). In this paper I will be arguing for an alternative
approach. Contrary to Kaplan, Piccinini and Craver, I propose that computational
explanation in neuroscience be treated differently from mechanistic explanation. Fol-
lowing Dayan and Abbott (2001, p. xiii), I hold that computational models are often
interpretative, as opposed to phenomenal or mechanistic. Interpretative models are
central to explanations of why a particular neuronal type or brain area is organised
in a certain way, explanations which typically make reference to efficient coding
principles. In contrast, phenomenal models describe what is there, and mechanistic
models explain how systems work. Information-theoretic and computational princi-
ples are central to interpretative modelling, and causal-mechanical descriptive detail
and accuracy is not required. For this reason, most interpretative models are min-
imal. That is to say, they typically abstract away from many biophysical details
of the neural system, in order to highlight dominant causal influences or universal
behaviour.

1 Just a small sampling of works: Bechtel and Richardson (1993), Machamer et al. (2000), Craver and
Darden (2001), Craver (2006, 2007), Bechtel (2008), Bogen (2008), Bogen and Machamer (2010), Kaplan
and Craver (2011) and Piccinini and Craver (2011).
2 In what follows I focus on this particular presentation of the mechanistic approach to computational
neuroscience and cognitive science. For work in a similar vein see Piccinini (2007), Piccinini and Craver
(2011), Kaplan and Craver (2011) and Piccinini and Bahar (2013). The view I develop here is directed at
this general view, to the extent that it presupposes the two mechanistic norms that I outline below (3M and
MDB), but for ease of exposition I only make explicit the contrast with Kaplan’s (2011) paper. Note that
not all mechanists are committed to the narrow view of mechanistic explanation that is targeted here. See
e.g. Bogen and Machamer (2010).
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I present a new class of minimal model—the I-minimal model—which figures
heavily in the efficient coding explanations that are prevalent in computational neu-
roscience. In order to illustrate this distinct explanatory pattern I will present a pair
of case studies. Firstly, I discuss the influential contrast normalisation model of pri-
mary visual cortex (Heeger 1992), which has recently been interpreted as a canonical
neural computation (Carandini and Heeger 2012)—one of a few basic computational
operations that are frequently found in different neural circuits, and are described at
a high level of abstraction from biophysical implementation. The second example is
the much-used Gabor model of V1 receptive fields (RFs). Models similar to this one
have been described by Kaplan (2011) as merely phenomenal and not explanatory.
I will show how the Gabor model is able to answer important explanatory ques-
tions, including Woodward’s (2003) “what-if-things-had-been-different questions”,
even though it departs fully from the model-to-mechanism mapping framework that
has been proposed as the criterion for explanatory success (Kaplan 2011; Kaplan and
Craver 2011).

In the next two sections I will present Kaplan’s case against the distinctness of
computational explanation (Sect. 2) and in favour of the universality of mechanistic
explanation (Sect. 3). Section 4 will introduce canonical neural computations and the
normalisation model. Section 5 will analyse the explanatory form employed in this
kind of computational modelling, presenting the example of the Gabor model. In the
final section I consider the lessons to be learned, in particular the new picture of levels
that emerges—levels as perspectives rather than levels of scale or levels of being,
as typically conceived. This gives us new insight into the utility of computational
modelling as a distinct practice within neuroscience.

2 Claims of “computational chauvinism”

Before presenting his positive thesis, Kaplan first removes one potential obstacle to
the mechanistic account of computational neuroscience, namely an influential view
in the philosophy of mind and philosophy of psychology which sees computational
explanation as exclusive to psychology and autonomous from neuroscience. Following
Piccinini (2006), Kaplan (2011, p. 341) employs the term “computational chauvin-
ism” to cover this view which takes computational models and explanations to be
independent from mechanistic ones, and therefore subject to different norms. He dis-
cusses three “interrelated claims” which constitute the chauvinist3 position attributed
to Johnson-Laird (1983) and Fodor (1975):

C1 (Autonomy)—“Computational explanation in psychology is autonomous from
neuroscience.”
C2—“[C]omputational notions are uniquely appropriate or proprietary to psychol-
ogy”

3 It is not clear whether or not, each of these theses is sufficient for computational chauvinism, or if they
are jointly sufficient, or if any of them are necessary. In proposing my own view on the explanatory models
in computational neuroscience, I will endorse modified versions of C1 and C3.
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C3 (Distinctness)—“[C]omputational explanations of cognitive capacities in psy-
chology embody a distinct form of explanation—functional analysis or functional
explanation.”

What is striking is that the idea that computational explanation in neuroscience may
be distinct from mechanistic explanation is only presented as part of a package of
contentious views about the independence of psychology from neuroscience, such as
the idea that computational notions are tied exclusively to psychology (C2). As Kaplan
notes (p. 342), C1-3 imply that there can be no such thing as explanatory computa-
tional neuroscience! Furthermore, the very existence of computational neuroscience
refutes C2, a thesis proposed by Fodor (1975). Thus it is not hard to find reasons
to reject the thesis of non-mechanistic computational explanation, as it is presented
here.

Firstly, the autonomy claim of C1 is given a very strong sense of psychology
going about its business in utter isolation from neuroscience. Most would agree
that in the last three decades cross talk between these disciplines has been contin-
ually increasing, and that it has been scientifically fruitful. In particular, the birth of
cognitive neuroscience as a field in its own right (see Gazzaniga et al. 1998), and
the explosion of methods in human neuroimaging has further blurred disciplinary
boundaries. C1 is also associated with the functionalist’s strong thesis of the mul-
tiple realizability of the mental in completely non-biological systems. This thesis
entails that one could develop a flourishing computational science of the mind/brain
in isolation from neuroscience, and it has been rightly challenged (e.g. Bechtel and
Mundale 1999). But it should be noted that there is a weaker claim in the vicinity
of C1 which Kaplan does not discuss. Namely, the thesis that there are computa-
tional explanations in psychology or neuroscience that are not tied to any particular
neural realization. Such explanations refer to a prominent functional feature which
may be instantiated by a number of different biophysical mechanisms, and so is mul-
tiply realized in a weaker sense (Weiskopf 2011b). The picture that follows is one
of computational descriptions that are fairly independent but still loosely constrained
by the capacities and limitations of biophysical processes. In Sect. 5 I will make
the case that this is how we should interpret canonical neural computations, such as
normalization.

C2 would find few apologists these days, for the reason that computational mod-
elling is now ubiquitous in neuroscience as well as psychology and cognitive science.
C3, the thesis of a distinct computational explanatory strategy, is more promising. Like
Piccinini and Craver (2011), Kaplan ties the distinctness thesis to Cummins’ (1983)
notion of functional analysis. Kaplan argues that since Cummins’ functional explana-
tions must eventually refer to mechanisms, they are not truly distinct from mechanistic
explanations (p. 345). Whatever the pro’s and con’s of Cummins’ account, C3 like
C1 can be repackaged as a perfectly sensible thesis regarding explanation in com-
putational neuroscience. In Sect. 5 I will argue that many computational models are
developed in order to address specific questions about the role of particular neurons or
circuits in coding and information processing required for particular tasks. As Dayan
and Abbott (2001, p. xiii) describe, this class of “interpretative” models is important in
asking “why” questions regarding the function and coding properties of neural struc-
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tures. Addressing the “what” (descriptive models) and “how” (mechanistic models)
can only get you so far.4

Brandon (1981, p. 91) made an analogous point regarding teleological explanation
in biology:

In adult Homo sapiens there are marked morphological differences between
the sexes. Why is this? Answer: Different sex specific hormones work during
ontogenetic development to produce these differences. Is this answer satisfying?
That depends on the question one’s really asking. One might be asking what’s
behind these hormonal differences, what’s it all for. Whether of not this question
is interesting or answerable, it is not answered by the above bit on hormones.
One might want more.

Similarly, imagine if neuroscientists had only descriptive and mechanistic models of
the action potential. They would know what an action potential is, and how it is gen-
erated, but that does not entail that they know anything of its function—what it’s for.
Without this crucial piece of theory there would be no way to connect neuroanatomy
and neurophysiology to function and hence to behaviour—seeing, smelling, remem-
bering. A central dogma of neuroscience is that the action potential is for information
transmission, and that information theory and computational principles are needed
to understand why action potentials have particular patterns of generation.5 Below, I
will show that while computational explanation in neuroscience is not entirely insu-
lated from mechanistic considerations, it does have a distinct explanatory form. Thus it
should not be subject to mechanistic norms of explanation. Next I will discuss Kaplan’s
presentation of those norms.

3 Minimal models or more details the better?

The essence of Kaplan’s conception of mechanistic norms is captured by the model-
to-mechanism-mapping (3M) requirement:

(3M) A model of a target phenomenon explains that phenomenon to the extent
that (a) the variables in the model correspond to identifiable components, activ-
ities, and organizational features of the target mechanism that produces, main-
tains, or underlies the phenomenon, and (b) the (perhaps mathematical) depen-

4 Rather tellingly, Kaplan (2011, p. 349) quotes from Dayan and Abbott (2001, p. xiii) in order to invoke their
distinction between descriptive and mechanistic models; but this third class of models gets no mention what-
soever. In comparison, Craver (2007, p. 162) acknowledges that there may also be non-mechanistic (“non-
constitutive”) explanation in neuroscience, but restricts his focus. I.e. he accepts the possibility of explana-
tory pluralism. It might be argued, in a similar vein, that the I-minimal models I discuss below are not counter-
examples to Kaplan’s account because they are simply beyond his focus. But that would be to ignore his
explanatory monism (the claim that all explanatory models in computational neuroscience are mechanistic).
5 Piccinini and Scarantino (2010) are careful to distinguish computation from information processing.
This distinction is not critical for understanding the scientific material discussed below because these
neuroscientists are not associating “neural computation” with digital computation, or any other man-made
computational system. Rather “neural computation” is a catch-all for whatever information processing
(i.e. formally-describable input-output transformations) neural systems do and the theoretical definition of
neural computation is a work in progress.
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dencies posited among these (perhaps mathematical) variables in the model
correspond to causal relations among the components of the target mechanism.
(Kaplan 2011, p. 347, cf. Kaplan and Craver 2011, p. 6116)

It is important to make a few clarificatory points about 3M. Firstly, Kaplan (2011,
p. 347, following Weisberg 2007) describes it as a “regulative ideal”, i.e., “as a clear
guideline for the construction of explanatory mechanistic models in computational
neuroscience and a standard by which to evaluate them as explanations”. This suggests
that for any model whose variables represent a few mechanism components, any more
detailed model, accurately describing more components, will—all else being equal—
be better. Thus the hypothetical, maximally complete and detailed representation of the
mechanism is the one best explanatory model onto which all others aim to converge.
Kaplan (2011, p. 347) is careful to note that:

3M does not entail that only completely detailed, non-idealized models will be
explanatorily adequate. 3M is perfectly compatible with elliptical or incomplete
mechanistic explanations, in which some of these mechanistic details are omitted
either for reasons of computational tractability or simply because these details
remain unknown.

What 3M does imply, however, is that adding detail to a model will typically make
it a better explanation. As Kaplan (2011, p. 347) writes, “3M aligns with the highly
plausible assumption that the more accurate and detailed the model is for a target
system or phenomenon the better it explains that phenomenon, all other things being
equal.”7 I call this the More Details the Better (MDB) assumption.8 So while mecha-

6 Crucially, Kaplan and Craver’s (2011, p. 611) version of 3M lacks the qualificatory phrase “to the extent
that”. They write that: “In successful explanatory models in cognitive and systems neuroscience (a) the
variables in the model correspond to components….”. This can reasonably be interpreted as requiring that
all components correspond to mechanism parts, thus requiring that models contain no non-referring mathe-
matical features such as dummy variables or un-interpretable parameters. This is a problematic requirement
that Kaplan (2011, pp. 347–348) avoids, stating just that at least one model variable or dependency must
correspond to a mechanism component or causal relations.
7 Unfortunately Kaplan gives no indication of how the “all else equal” clause should be spelled out. Given
that he only mentions idealization and abstraction as there for “computational tractability” or because the
details are unknown, I assume that the “all else equal” clause” just means that if the choice is between a
fully detailed model which is impossible (or very difficult) to implement in your hardware, or an elliptical
model that works, the elliptical model is better.
8 As I see it, the primary statement of the MDB assumption is in Craver’s (2007, p. 113) discussion of the
“mechanism sketch”, as part of his presentation of the norms for mechanistic explanation: “A mechanism
sketch is an incomplete model of a mechanism. It characterizes some parts, activities, or features of the
mechanism’s organization, but it leaves gaps. Sometimes gaps are marked in visual diagrams by black boxes
or question marks. More problematically, sometimes they are masked by filler terms that give the illusion
that the explanation is complete when it is not. …. Terms such as “activate,” “inhibit,” “encode,” “cause,”
“produce,” “process,” and “represent” are often used to indicate a kind of activity in a mechanism without
providing any detail about exactly what activity fills that role. Black boxes, question marks, and acknowl-
edged filler terms are innocuous when they stand as place-holders for future work….”. In general terms,
better explanations arise as research progresses along the axis from mechanism sketches, to mechanism
schemata, and finally to complete mechanistic models. On most occasions in which the MDB assumption
is in play, a mechanism sketch is held up to unfavourable comparison against an improved, more detailed
model. See discussion below of the Hodgkin–Huxley (HH) model, and Kaplan’s (2011) other case studies
of progress in model building through de-idealization.
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nists nod to the importance of abstraction and idealization,9 they see them as no more
than pragmatic constraints necessitated by gaps in the data, hardware restrictions (how
much detail current computers can simulate), or our cognitive limitations (how much
detail in a model we can make sense of).

Kaplan (2011, p. 347) rightly notes that Batterman (2009) expresses an opposing
view whereby abstraction and idealization can actually contribute to the explanatory
success of a model. Batterman’s (2002) account of the explanation of critical phe-
nomena in thermodynamics highlights minimal models—those which exclude micro-
physical detail irrelevant to the understanding of physical behaviours such as phase
transitions. In other words, this is the view that there are in-principle reasons why sci-
entists will build incomplete models. Crucially, though, this is not simply the opinion
of an iconoclastic philosopher of physics; it is actually a view that one finds articulated
frequently in the computational neuroscience literature. So in the remainder of this
section I will contrast the MDB, “maximalist” account with the minimalist alterna-
tive. This contrast is an important preliminary to the case studies and new account of
explanatory norms which will be developed in subsequent sections.

In sum, 3M and MDB are the twin pillars of Kaplan’s mechanistic approach to
computational neuroscience. It is worth mentioning the proposed advantages of this
account. Firstly, it is said to allow for a robust distinction between merely phenomenal
and truly explanatory models unlike, e.g., Chemero and Silberstein’s (2008) dynamic
systems approach; similarly, it fits with the common mechanist intuition that how-
actually models provide better explanations than how-possibly models. Also, it is said
to fit with the de-idealising trajectory of a number of research projects in computational
neuroscience. Kaplan presents three case studies—action potential models beginning
with Hodgkin and Huxley (1952), the Difference of Gaussians model of retinal gan-
glion cell RFs, and the Zipser-Anderson gain field model of motor control—which are
intended to show that neuroscientists are in the business of incrementally improving
the explanatory success of their models by adding more accurate biophysical detail as
soon as new neuroscientific facts are discovered.

Some high-profile research programmes in neuroscience do conform to the MDB
methodological prescription. For example, the Human Brain Project is a new Europe-
wide flagship project which has the stated goal of simulating an entire human brain in
a super-computer (see http://www.humanbrainproject.eu/). This is a follow-on from
the Blue Brain Project, which aims to produce highly realistic and detailed computer
simulations of individual cortical columns (Markram 2006; see http://bluebrain.epfl.
ch/). Such projects are obviously animated by the idea that building computational
models which simulate actual neural mechanisms with as much detail and accuracy
as currently possible will be an invaluable means to link neural circuits to behaviour
and to understand the functioning of the healthy and diseased brain.

On the other hand, it is by no means difficult to find computational neuroscientists
criticising the MDB methodology. Commonly, pragmatic concerns are discussed in the

9 A note on terminology: by ‘abstract’ I mean a model which leaves out much biophysical detail, in other
words ‘highly incomplete’; by ‘idealized’ I mean a model which describes a system in an inaccurate or
unrealistic way (Thomson-Jones 2005). In criticizing the MDB assumption, abstraction is the more relevant
term. However, the literature on models often conflates these two.
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same breath as in principle ones. It is perhaps for this reason that such concerns have
been ignored by mechanist philosophers of neuroscience writing in favour of MDB—
for if the only reasons not to build a maximally detailed model are merely pragmatic,
these are deemed irrelevant to the normative project of philosophy of science. In a
recent textbook, Sterratt et al. (2011, p. 316) articulate the practical worries over
maximalist modelling:

[T]o make progress in the computational modelling of biological systems,
abstraction of the elements of the system will be required. Without abstrac-
tion, the resulting models will be too complex to understand and it will not be
feasible to carry out the desired computations even using the fastest computers…
(cf. Sejnowski et al. 1988, p. 1300)

Similarly, in the textbook Fundamentals of Computational Neuroscience, Trappenberg
(2010, p. 7) writes that, “[m]odelling the brain is not a contest in recreating the brain in
all its details on a computer. It is questionable how much more we would comprehend
the functionality of the brain with such complex and detailed models.” But in the
same passage Trappenberg suggests that complex systems can, in principle, be better
explained by modeling only the essential details:

Models are intended to simplify experimental data, and thereby to identify which
details of the biology are essential to explain particular aspects of a system.
(p. 6)

And in a seminal paper outlining methodological and explanatory aims and
achievements of the then new field of computational neuroscience, Sejnowski et al.
(1988, p. 1300) make the connection between minimal modelling in physics, and the
value of abstraction (and to some extent, idealization) in neuroscience:

Textbook examples in physics that admit exact solutions are typically unrealistic,
but they are valuable because they illustrate physical principles. Minimal models
that reproduce the essential properties of physical systems, such as phase transi-
tions, are even more valuable. The study of simplifying models of the brain can
provide a conceptual framework for isolating the basic computational problems
and understanding the computational constraints that govern the design of the
nervous system.

At this stage it is important to note that there are two different notions of minimal
models currently in play in the philosophy of science literature. In Batterman’s account,
the explanations which utilize minimal models are not causal-mechanical ones. In
contrast, Weisberg (2007) uses the term ‘minimal model’ to refer to models which
accurately capture essential causal detail—the “difference makers” (Strevens 2004,
2008)—and hence still provide a kind of causal-mechanical explanation. The contrast
is significant enough to warrant the introduction of disambiguating labels: B-minimal
models for the Batterman type, and A-minimal models for the Strevens/Weisberg type.
We have seen that computational neuroscientists talk approvingly of minimal models;
the further question of whether these models figure in causal-mechanical or some other
kind of explanation will be important to our subsequent discussion of the adequacy of
the mechanistic framework in these cases.
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Fig. 1 From Hubel and Wiesel (1962), the explanation of simple cell elongated RFs in terms of the
arrangement of excitatory input from LGN cells which have circular RFs

For instance, Levy (in press) uses a study of the HH model of the action potential to
argue convincingly against the MDB assumption. Levy and Bechtel (in press; cf. Levy
in press) show how numerous mechanistic explanations in neuroscience and biology
utilize A-minimal models, and that the explanatory value of these models would not be
enhanced by the addition of further biophysical detail. Thus one can reject MDB but
still accept the broader mechanistic explanatory framework. In sum, the existence of
A-minimal models in computational neuroscience does not rule out Kaplan’s central
claim that computational explanation is a species of mechanistic explanation. So the
task of the next two sections will be to present examples of influential models in
computational neuroscience which, as I will argue in Sect. 5, are minimal but not
mechanical. Thus I will describe a new category of minimal model, and argue that this
framework is needed to account for this distinct pattern of explanation in computational
neuroscience.

4 Case study: normalization and “canonical neural computation”

Our story begins in the late 1950s with the discovery of simple cells in the primary
visual cortex of the cat10 (Hubel and Wiesel 1962). These neurons were found to be
extremely responsive to small, high contrast, bar-shaped stimuli placed at a particular
location and orientation in the cat’s visual field. Hubel and Wiesel gave a qualitative
description of simple cell response properties, and explained their elongated RF shape
as due to the neurons’ feed-forward input from the lateral geniculate nucleus (LGN)
(see Fig. 1). In quantitative terms, Hubel and Wiesel’s account suggested that simple
cells have linear response properties, i.e., that the neuron’s RF could be mapped
by observing its responses to small spots of light in the visual field, and that its
response to any novel stimulus could be predicted from its RF map. This feed-forward,
linear hypothesis was subjected to empirical scrutiny (using a variety of experimental
animals) in the following decades and was found wanting in many respects.11

10 Strictly speaking, the term ‘V1’ only refers to primary visual cortex in primates, whereas ‘striate cortex’
is appropriate for primary visual cortex of felines or primates. Below I do sometimes use ‘V1’ to refer to
primary visual cortex of both kinds of animals, as is now quite common in the literature.
11 See Chirimuuta and Gold (2009) for a more detailed review of these topics.
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Fig. 2 Diagram of Heeger’s (1992) normalization model. Each simple cell (open circle) sends an excitatory
signal (S) to a complex cell (open circle enclosing ‘+’ sign). Simple cells receive inhibitory feedback
which modulates according to the overall level of activity in the population of cells. Inhibitory signals are
represented by lines with rounded terminals

A particularly important anomaly was the observation of cross orientation suppres-
sion. If the preferred stimulus of a simple cell (e.g. a small vertical bar) is superim-
posed with a similar stimulus at a different orientation (e.g. a small horizontal bar), the
response of the neuron is significantly reduced, compared to its activity when the pre-
ferred stimulus is presented alone (Bonds 1989). Since the LGN inputs to the neuron
would be the same in both stimulus conditions, this result cannot be explained by Hubel
and Wiesel’s account. A significant advance was made in 1992 when David Heeger
presented the normalization model, a new quantitative model of simple cell response
properties which could account for findings such as cross orientation suppression. The
basic idea of this model is that each simple cell has linear excitatory input originating
from the LGN, and in addition it receives inhibitory input from nearby neurons in the
visual cortex. The model is given by the following equation:

Ēi (t) = Ei (t)

σ 2 + ∑
i Ei (t)

(1)

where Ēi is the normalised response (energy) of one simple cell, t is time, σ 2 is a
parameter which governs the contrast at which the model neuron will saturate and
Σ E determined by the sum of responses of all simple cells in a local population. The
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model is accompanied by a picture (Fig. 2) which represents the pattern of excitatory
and inhibitory inputs to V1 neurons (both simple and complex cells).

Findings such as cross orientation suppression are accounted for by the Σ E divisive
normalisation term, which is thought to derive from a local inhibitory circuit in V1.
That is, when a non-preferred stimulus (horizontal bar) is presented at the same time
as the preferred stimulus (vertical bar), local neurons which are responsive to the
horizontal bar will be sending out a strong inhibitory signal, which will dampen the
response of the one neuron to the vertical bar. The model has had countless applications
within experimental and theoretical visual neuroscience (see Carandini and Heeger
2012 for review). In combination with the Gabor model of the RF (see Sect. 5.2),
normalization is an essential component of the “standard model” of primary visual
cortex (Rust and Movshon 2005).

According to the mechanistic framework, the normalization model would likely be
classified as a “mechanism sketch”—that is, an incomplete description of the mech-
anism which correctly highlights some components of the mechanism, and describes
some of their dynamics, but leaves many gaps and “filler terms” (Craver 2007, p.
113; Kaplan and Craver 2011, p. 609). In particular, the normalization model gives
a quantitatively accurate prediction of cross orientation suppression, and numerous
other phenomena (Heeger 1992), but its predictive ability is due to the Σ E term in
Eq. 1 which only describes the inhibitory mechanism in a very schematic way. It
merely postulates that local neurons, those sensitive to a range of orientations and spa-
tial frequencies (bar width), will send inhibitory signals to each other, which combine
to give the population suppressive effect, Σ E . It says nothing about the biophysical
mechanism of inhibition—what neurotransmitters are involved, what its dynamics are,
etc.

Kaplan and Craver take mechanism sketches to have limited explanatory value.
While they do represent some features of the mechanism, as required by the 3M con-
straint, they stand in need of elaboration as more details of the underlying mechanism
are discovered (MDB assumption). Mechanism sketches are way stations towards full
blown explanatory models. To illustrate this view, it is worth mentioning Craver’s
(2007, p. 115) and Kaplan and Craver’s (2011, p. 609) analysis of the HH model of
the action potential. They describe it as, at best, a mechanism sketch—because the
details of how membrane voltage modulates ion conductivity were unknown until the
1970s and are not described in the model.12 Later researchers discovered the voltage
gated ion channels responsible for the conductivity changes and thereby improved on
the original HH sketch.

Kaplan (2011) presents three case studies of models in computational neuroscience
that, according to his account, started out as predictively adequate but barely (or not at
all) explanatory, and through discovery of underlying biophysical mechanisms have
become truly explanatory. It might seem that the case study of the normalization

12 At worst, the HH model has been described by mechanist philosophers of neuroscience as a merely
phenomenal and not at all explanatory model (Craver 2008; Bogen 2008), or as a how-possibly model that
has been falsified by later investigation and superseded by current how-actually models (Kaplan and Craver
2011, pp. 355–358). See Weber (2005, 2008), Schaffner (2008), Levy (in press), and Woodward (in press)
for contrary opinions.
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model would conform to this pattern. For in 1994, Carandini and Heeger suggested a
biophysical implementation of divisive normalization, shunting inhibition, and even
showed that it is possible to derive Eq. 1 from a fairly realistic model of membrane
potential dynamics. This less sketchy model—which could be classified as a “how
possibly” model within the mechanist’s framework—is reported to be consistent with
some extracellular physiological data. But, damningly, it is inconsistent with recent
intracellular measurements (p. 1335). In particular, it was observed that applying a
GABA inhibition blocker to V1 does not abolish the cross orientation suppression
effect, as would be predicted by the shunting inhibition mechanism. Carandini and
Heeger (1994, p. 1335) speculate that an alternative mechanism for normalization
could be one which affects the neuron’s gain (i.e. excitatory responsiveness), and
evidence for this mechanism was presented in later publications (e.g. Carandini et al.
2002).

Let us now fast forward to the present day. An interesting thing has happened to these
neuroscientists’ discussion of normalization, something not at all in alignment with
the MDB assumption, or the mechanists’ preferred historical pattern of ever increasing
elaboration of initial sketches. In a 2012 publication, Carandini and Heeger present the
normalization model as a “canonical neural computation” (CNC). These are defined
as “standard computational modules that apply the same fundamental operations in a
variety of contexts” (p. 51). Other examples of CNC’s are linear filtering, recurrent
amplification, associative learning, and exponentiation (a form of thresholding). They
are presented as a toolbox of computational operations that the brain applies in a
number of different sensory modalities and anatomical regions, and which can be
described at a higher level of abstraction from their biophysical implementation.13

Carandini and Heeger review the diverse applications of the normalization model
since 1992. Normalization models identical in form to Eq. 1 have successfully been
applied to an impressively wide range of neural systems: invertebrate olfaction; the
retina (photoreceptors, bipolar cells, and retinal ganglion cells); neural network mod-
elling of V1 development (e.g. Willmore et al. 2012); higher visual areas (MT, V4,
IT); auditory cortex (A1); multi-sensory integration (area MST); visuo-motor control
(area LIP); visual attention; and the model has also been used to model behavioural
(psychophysical) data (Tolhurst et al. 2010). Although, the broad role of normalization
is not thought to be the same in each of these systems,14 the idea is that the same com-
putation is performed in each case—that is, dividing the output response of a neuron
by a term that relates to the average firing rate of nearby neurons. The third, and for our
discussions most important characteristic of normalization as a CNC is that there is
now good evidence that normalization is implemented by numerous different biophys-
ical mechanisms, depending on the system in question. Both synaptic suppression and

13 While the model-target distinction sometimes becomes blurred in the neuroscientific literature—
sometimes a computation is talked about as if it is just a model, and sometimes it is treated as a function
belonging to the neural circuit itself—it is worth delineating it at this point. CNC’s are computations per-
formed by neurons and circuits in the brain. Thus the normalization model, e.g. Eq. 1, is a representation
of the neural computations.
14 Amongst the many proposed functions of normalization are: maximizing sensitivity of sensory neu-
rons; sharpening the tuning of sensory neurons; decoding distributed neural representations; discriminating
amongst stimuli; computing a winner-take-all pooling rule; and redundancy reduction.

123



Synthese (2014) 191:127–153 139

shunting inhibition are feasible implementations in certain brain regions, alongside
noise and amplification mechanisms. In other words, normalization is multiply
realized.

Carandini and Heeger (2012) are now unambiguous in stating their view that there
must be a conceptual distinction between understanding normalization as a CNC and
more mechanistic considerations. For example, they claim, “[c]onceptually, it is useful
to consider contrast normalization as separate from light adaptation, but mechanisti-
cally the two stages may overlap in bipolar cells” (p. 52). Thus we see that Carandini
and Heeger endorse a “distinctness of computation” thesis: the idea that there can be
principled reasons for analyzing neural systems computationally rather than mecha-
nistically. I do not call the claim an “autonomy of computation” thesis because they
are not proposing that CNC’s are fully independent of biophysical implementation, or
that CNC’s can best be studied in full isolation from mechanistic considerations. This
distinctness thesis of course assumes that computational explanations do have a sui
generis form. Thus I interpret Carandini and Heeger as endorsing modified versions
of Kaplan’s C1 (autonomy) and C3 (distinctness) theses.

Before concluding the normalization story, I should mention that elsewhere Caran-
dini (2012) has advocated the CNC project as an important step toward linking our
knowledge of neural anatomy and physiology (i.e. mechanism) to behavior and cog-
nition. As Carandini and Heeger (2012, p. 61) write, “[i]dentifying and characterizing
more modular computations of this kind will provide a toolbox for developing a prin-
cipled understanding of brain function.”15 In other words, the idea is that a dedicated
computational analysis of neural circuitry will be a route to better explanations of the
brain and of the brain’s contribution to behaviour.

For example, in a report from a 2009 workshop on CNC’s Angelaki et al. (2009)
write that,

These models have led to important simplifying insights into the relationship
between neural computations and behavior. …for example … that a seemingly
heterogeneous variety of forms of attentional modulation can be understood as
resulting from a simple model of contrast gain control.

Elsewhere in the same report Caddick et al. (2009) make the comparison between the
search for CNC’s and the discovery of “secondary structure” in molecular biology.
The “primary structure” of a protein is its sequence of base pairs, whereas the “sec-
ondary structure” characterises domains, protein substructures that are rearranged, like
lego bricks, in different proteins to build various functional units. As Caddick et al.
(2009) write, “secondary structure” has been identified as a fruitful level of abstrac-
tion to understand proteins, the level that provides the appropriate modules.” They
propose that the discovery of analogous modules in neuroscience—canonical neural
computations—is our best bet at tackling the “staggering complexity” of the brain.

15 Incidentally, Weiskopf (2011a, p. 249) presents a similar idea when he writes, “The interesting func-
tionally defined categories, then, constitute recurrent building blocks of cognitive systems. They explain
the possession of various capacities of those systems without reference to specific realizing structures.”
Though he does not focus here on non-mechanistic explanation.

123



140 Synthese (2014) 191:127–153

Let us now summarise the main points of the case study. We have traced the varying
fortunes of the normalization model from its early beginnings as a sketch-like expla-
nation of nonlinear behaviour of V1 simple cells, to its troubled adolescence as a how-
possibly mechanistic model. The reader may have been saddened as it failed to mature
into a fully fledged how-actually model. Yet in the end we have witnessed an interesting
turn of events: the model has been reinvented as a canonical neural computation. Along
the way we have seen that the mechanists’ 3M requirement and MDB assumption sit
oddly (to put it mildly) with the new interpretation and status of the normalization
model. For Carandini and Heeger (2012) no longer think that we should interpret
the normalization model mechanistically, as describing components and dynamics
of a neural mechanism. Instead, they focus on the information-processing princi-
ples encapsulated by the model. Furthermore, any digging down to more mechanistic
detail would simply lead us to miss the presence of CNC’s entirely, because of their
many different realizations. More details are certainly not for the better, in this case.
And because undetailed CNC models like normalization are not way-stations to more
detailed mechanistic models, I urge that they be considered as a type of minimal model.
The representational ideal (Weisberg 2007) of minimal models is not that of fidelity to
the fine-detail of nature. In the next section I will compare CNC’s to other examples
of minimal models and outline the explanatory form associated with CNC’s.

5 Information, explanation, and I-minimal models

What is explanation? Not an easy question. If one reads the literature on the normal-
ization model one finds the word “explain” being used in various ways. For example,
it is said that the model explains nonlinearity of V1 in the sense that it fits the existing
data (e.g. on non-specific suppression) and is expected to do well in predicting data
from new experiments. On other occasions, the model is said to explain in the sense
of providing a unifying framework for past and future empirical investigation. Both
of these senses are alluded to by Heeger (1992, p. 192):

The new model explains much of the existing experimental data on striate cell
responses, and provides a theoretical framework in which to carry out future
research on striate cortical function

Chemero and Silberstein (2008) take prediction and unification to be sufficient for
explanation, and argue on those grounds that non-mechanistic, dynamical systems
models in psychology and cognitive neuroscience are explanatory. This is the claim
contested by Kaplan and Craver (2011). So while I am all for taking the scientists’ own
notions of explanation seriously, and am also in favour of pluralism about explanation
that accommodates unificationist criteria where these may apply (Khalifa 2012), these
are not positions I will aim to defend here. Instead, I will show that one common pattern
of non-mechanistic explanation is indeed explanatory by one of the mechanists’ core
criteria (see Kaplan 2011, p. 354)—namely, the ability to address “what-if-things-had-
been-different questions” or “w-questions” (Woodward 2003). This is the efficient
coding pattern of explanation. In order best to describe this distinctive explanatory
type, I will return to the notion of minimal models introduced above, and contrast

123



Synthese (2014) 191:127–153 141

CNC’s with the other kinds of minimal models discussed in the philosophy of science
literature.

5.1 I-minimal models

A-minimal models were defined in Sect. 3 as those which provide a pared down account
of the causal factors that give rise to the explanandum phenomenon. For example,
Woodward (in press) and Levy (in press) describe the Hodgkin and Huxley (1952)
model of the action potential in this way. If one takes the voltage-time profile of the
action potential as the primary explanandum, then the HH model explains this in terms
of voltage sensitive conductivity changes in the neural membrane. It describes how
the membrane’s changing conductivity to potassium and sodium ions generates the
action potential profile, but does not describe the biophysical mechanism for conduc-
tivity changes, i.e. the voltage gated ion channels which were discovered only later.
The model is said to represent the action potential mechanism in a highly abstract
way. As Levy, Woodward and Schaffner (2008) point out, one of the advantages of
an A-minimal model over a fully detailed mechanistic model is that it has greater
generality—it can be used to model the action potentials in a range of neuron types in
various different species, where biomechanics are quite dissimilar. Like a mechanism
sketch, an A-minimal model can still be thought of mapping onto mechanism compo-
nents in a coarse-grained way; but it should not be thought of as an incomplete model,
standing in need of subsequent addition of explanatory detail.

As indicated above when I discussed one possible interpretation of Heeger’s (1992)
normalisation model as a mechanism sketch, such CNC’s could similarly be charac-
terised as A-minimal models. For example, one could take the Σ E term to be repre-
senting the causal mechanism for neuronal inhibition in a very abstract manner, in the
same way that the HH model gives a very abstract representation of the causal oper-
ation of ion channels. However, I caution that any attempt at assimilation of CNC’s
into the class of causal-mechanical models, even the most minimal ones, would make
one oblivious to the defining characteristics of CNC’s.

The central point of Carandini and Heeger’s (2012) account is that CNC’s do not
attempt to describe mechanisms—which vary significantly from one instance of a
CNC to another, even when described in a very abstract manner—but rather a univer-
sal feature of the different systems to which the one CNC model, like normalisation,
will apply. This feature is a computation. They write, for example, that “it is unlikely
that a single mechanistic explanation [for normalization phenomena] will hold across
all systems and species: what seems to be common is not necessarily the biophysical
mechanism but rather the computation.” It is worth noting that the distinction between
computation and mechanism is rather commonplace in neuroscience. For example,
Sejnowski et al. (1988, p. 1300) write that, “mechanical and causal explanations of
chemical and electrical signals in the brain are different from computational explana-
tions. The chief difference is that a computational explanation refers to the information
content of the physical signals and how they are used to accomplish a task”. So rather
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than wade into the vast literature which concerns definitions of computation,16 I sug-
gest we instead examine the specific ways in which Carandini and Heeger’s models
can be said to describe computations rather than mechanisms.

The term ‘normalization’ has a variety of meanings in mathematics and engineering,
which convey the idea of a function that brings values of a variable into a pre-defined
normal range. Heeger (1992) transferred this idea to the neuroscience context, where
the contrast normalization equation, in essence, models how the activity levels of
simple cells are continually brought down to a normal operating range via a kind
of negative feedback operation. Carandini and Heeger (2012) review evidence that
an equivalent normalization process occurs in a variety of sensory and non-sensory
brain areas. My key claim is that the use of the term ‘normalization’ in neuroscience
retains much of its original mathematical-engineering sense. It indicates a mathemat-
ical operation—a computation—not a biological mechanism. These neuroscientists
are making the commonplace assumption that neurons in the brain can be said to com-
pute mathematical functions, which can be characterised by formalisms like Eq. 1;
moreover, that these computations are the function of the neural system, such that if
you want to know what the system is for, you have to say what it computes.17 To take
another example of a CNC, the term ‘linear filter’ originates in engineering to describe
a process which generates an output signal by performing a linear operation on the
input signal (e.g. a bandpass filter reproduces the signal over a certain frequency band
and removes other frequencies). In saying that neurons in primary sensory areas are
linear filters, the claim is that they perform this kind of mathematical analysis.

Because of Carandini and Heeger’s emphasis on the universal characteristics of
CNC’s, and their proposal that CNC’s should not be understood mechanistically, it is
interesting to compare them with Batterman’s (2002, 2009) account of non-causal-
mechanical models in physics—called B-minimal models above. The important shared
feature of B-minimal models and CNC’s is that they define a universality class. In
the case of the normalization model, this is the group of neural circuits that can all
be described by Eq. 1. To take one of Batterman’s (2002, 37ff.) examples, this is the
group of all materials whose phase transitions near a critical point can be characterised
by the same dimensionless number, the “critical exponent”. Batterman (2002, p. 13)
describes two general characteristics of universality:

1. “The details of the system (those details that would feature in a complete causal-
mechanical explanation of the system’s behavior) are largely irrelevant for describ-
ing the behavior of interest.

2. Many different systems with completely different “micro” details will exhibit iden-
tical behavior.”

These characteristics certainly apply to canonical neural computations.18

16 For starters, see Piccinini (2006) and Piccinini and Scarantino (2010).
17 See textbooks such as Churchland and Sejnowski (1992), Koch (1998), Dayan and Abbott (2001),
Trappenberg (2010), and Sterratt et al. (2011).
18 In a sense A-minimal models can also be said to define a universality class. E.g. all those neuron’s
whose action potential’s can be described by HH model. Here, explanation of the universality is that the
model captures the shared, essential difference makers across all of these different neurons.
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An important difference between B-minimal models and CNC’s become apparent
if we focus on the kinds of scientific accounts given to explain the universal behaviour
itself. In the physics examples discussed by Batterman, the mathematical procedures
employed in deriving the models themselves explain why micro details of the system
ought to be largely irrelevant when modelling the critical behaviour. Batterman (2002)
calls this “asymptotic explanation”. No such formal niceties are available in neuro-
science. Instead, the explanation of universality refers to the computational function of
the modelled behaviour—that is, the computational problem that the modelled system
is able to solve. This is how Carandini and Heeger (2012, p. 60) put the matter:

Why is normalization so widespread? A tempting answer would be to see it as
a natural outcome of a very common mechanism or network; a canonical neural
circuit.19 However, there seem to be many circuits and mechanisms underlying
normalization and they are not necessarily the same across species and sys-
tems. Consequently, we propose that the answer has to do with computation, not
mechanism.

In other words, the presence of equivalent computational needs in different systems
means they will converge on the same CNC’s. For instance, Heeger (1992) proposed
that contrast normalization in primary visual cortex had an important role to play
in maintaining the tuning specificity of simple cells to a small range of stimulus
orientations, regardless of increasing overall stimulus contrast.20 Since maintenance
of fixed stimulus selectivity is required for reliable sensory coding in other modalities,
it is not at all surprising that normalization has been observed in non-visual areas,
and in invertebrates, even though the mechanistic implementation must be different.
Thus, if our question is, why should so many systems exhibit behaviour described by
normalization equation? The general answer is, because for many instances of neural
processing individual neurons are able to transmit more information if their firing rate
is suppressed by the population average firing rate.

If “suppressed” still sounds to your ears like yet more elliptical mechanistic expla-
nation, please bear with me as a I proceed to describe this explanatory framework and
supply further examples. In order to emphasize the difference between CNC’s and the
two other kinds of minimal models discussed above, I will baptize a new model type,
I-minimal model, where “I” stands both for “interpretative” and “informational”. With
a nod to Dayan and Abbott’s (2001, p. xiii) gloss on interpretative models, I define
I-minimal models as:

Models which ignore biophysical specifics in order to describe the information
processing capacity of a neuron or neuronal population. They figure in compu-
tational or information-theoretic explanations of why the neurons should behave
in ways described by the model.

Such explanations can be made precise and quantitative by reference to efficient cod-
ing principles. This idea can be illustrated with the example of redundancy reduction.

19 Anderson’s (2010) notion of a “working” would be an example of this hypothetical kind of circuit.
20 Note that Hubel and Wiesel’s hierarchical feedforward model predicts that for high contrast stimuli
simple cells will be less selective about orientation, in conflict with empirical observations.
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As Attneave (1954) observed, natural visual stimuli are highly redundant. Because of
edges, repeated textures, and other frequently occurring features, it is often possible
to predict what the next pixel in an image will be from knowledge of the previous one.
An inefficient code of a natural image is one which specifies each pixel value (e.g. a
bitmap); whereas a more efficient code is one which exploits the natural redundancies
and can convey the same information about structure but with a shorter signal length
(e.g. a jpeg). Barlow (1961) proposed that one of the functions of early visual process-
ing is to minimise the transmission of redundant information and therefore to represent
visual information in a more efficient manner. This can be done if the responses of
neurons in the early visual system are decorrelated—made maximally independent
from one another. Simulations by Schwartz and Simoncelli (2001) showed that nor-
malisation is a way to achieve decorrelated signals for neurons in the early visual and
auditory system. Hence they provided an efficient coding explanation for the response
properties of these neurons, in terms of the computational value of normalisation.21

We can now come to appreciate the distinctive explanatory value of I-minimal
models. They figure prominently in explanations of why a particular neural system
exhibits a particular empirically observed behaviour, by referring to its computational
function. For example, when cross orientation suppression was first observed it was a
baffling, anomalous finding. The 1992 contrast normalization model was able to unify
an impressive amount of anomalous data and by showing that these results could be
predicted by one simple model of neuronal processing in V1. Furthermore, by consid-
ering the functional importance of normalization—e.g. in retaining orientation tuning
specificity, or redundancy reduction—it could be shown why it is expedient of sensory
areas like V1 to implement normalization. These efficient coding explanations account
for observed properties of neural circuits in terms of the computational advantages of
that particular arrangement of neurons. Note that the appeal to coding principles like
redundancy reduction does not involve decomposition of any mechanism thought to
underlie the behaviour in question. Rather, it takes an observed behaviour and formu-
lates an explanatory hypothesis about its functional utility.22

21 Similarly, Olsen et al. (2010) have studied normalization in the olfactory system of Drosophila. Quoting
Simoncelli (2003), they present a two part efficient coding hypothesis, stating “(1) each neuron should use
its dynamic range uniformly, and (2) responses of different neurons should be independent” (p. 295).
They manipulate parameters of normalization in a computer simulation of the fly’s olfactory system and
show that normalization decorrelates neuronal responses, as required by (2), and that a similar gain control
transformation boosts weak responses to select stimuli, as required by (1). They also show that the simulation
findings fit with the empirical observations of decorrelation in the fly’s area PN. It should be noted that
the simulation in which the normalization equation is embedded is highly abstract. It is not intended as a
realistic, biophysical simulation of these neural systems. Rather, each neuron is modelled by a single number
which represents its response to the olfactory stimulus, and the entire population model only simulates 24
out of 50 neuronal types that have been found in the target brain area.
22 Rieke and Warland’s (1999) Spikes is a classic text on efficient coding and the application of information
theory to neuroscience. Other examples of efficient coding explanation are: Laughlin (1981), Srinivasan et
al. (1982), Atick and Redlich (1992), van Hateren (1992), Rieke et al. (1995), Dan et al. (1996), Olshausen
and Field (1996), Baddeley et al. (1997), Bell and Sejnowski (1997), Machens et al. (2001), Simoncelli and
Olshausen (2001) Schwartz and Simoncelli (2001), Vincent et al. (2005), Chechik et al. (2006), Graham et
al. (2006), Smith and Lewicki (2006), Borghuis et al. (2008), Liu et al. (2009), and Doi et al. (2012).
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a b

Fig. 3 a Qualitative RF map of the type used by Hubel & Wiesel. ‘+’ and ‘-’ signs represent ON and OFF
regions, respectively. and b A graphical representation of a 2D Gabor function

5.2 Another look at RF models

A final example—the Gabor model of V1 RFs—will reinforce the point about the
distinctness and significance of computational explanation in neuroscience, and will
illustrate an explanatory strategy that is common in the field. Within the CNC frame-
work the Gabor model would be classified as a kind of linear filter. Unlike the nor-
malisation model, the Gabor model cannot be interpreted as a mechanism sketch or
A-minimal model. Hence it breaks fully with the 3M criterion for explanatory success,
and would be classified by Kaplan (2011) and Kaplan and Craver (2011) as a merely
phenomenal, data-fitting model. In this section I will show that the Gabor model does
figure in genuine computational explanations, ones which address Woodward’s (2003)
w-questions.

g(x, y) = K exp
[
−1/2

(
x2

g/a2 + y2/b2
)]

× cos[−2π(U0x + V0 y) − P] (2)

Figure 3 is a graphical representation of a Gabor function, placed beside a map of
a simple cell RF of the sort presented by Hubel and Wiesel (1962). Equation 2 gives
the real (observable) part of a generalized 2D Gabor filter (Jones and Palmer 1987, p.
1236). a2 and b2 are variance in the x and y direction, respectively. x, y, U0 and V0 are
spatial coordinates, K is a scale factor, and P can be interpreted as the relative spatial
phase angle of the modulation term. Note that no parameters of Eq. 2 can be thought
of as referring to parts of neurons or circuits, as might be argued in interpreting the
normalisation model (Eq. 1).

Alongside contrast normalisation, the Gabor model of the simple cell RF is an
important element of the standard model of V1 (Rust and Movshon 2005). The Gabor
function is a product of a sinusoid with a Gaussian envelope, giving a local sinusoidal
modulation (Gabor 1946). The Model can be used to give a fairly accurate fit to data on
V1 neurons’ responses to simple artificial stimuli and more complex natural scenes.23

Kaplan (2011, p. 359) presents a similar model—the difference of Gaussians model of

23 See Olshausen and Field (2006) and Chirimuuta and Gold (2009) on limitations of the model.

123



146 Synthese (2014) 191:127–153

retinal ganglion cell RF’s—as an example of a phenomenal-model, one which fits the
data on the visual responses or neurons without offering any explanation of them. On
his view, only non-phenomenological mechanistic models which show how neuronal
circuits are arranged to give neurons their characteristic RF shape, are genuinely
explanatory. Thus I presume that the Gabor model, which is in effect a black box
model, would be subject to an equivalent analysis by Kaplan.

Nevertheless, there are various ways in which the Gabor model has been employed
in explanations of V1 neuronal response properties. The explanandum is the following:
why do V1 simple cells have elongated receptive fields of the sort that can be fit
by Eq. 2?24 The first explanation notes that the Gabor function originated in signal
engineering because it was found to have the interesting information-theoretic property
of minimising joint uncertainty over time and frequency of signal (Gabor–Heisenberg–
Weyl uncertainty). In its application to visual space, it can be said to minimise joint
uncertainty over location and spatial frequency of a stimulus. Thus a viable explanation
is because this minimises Gabor–Heisenberg–Weyl uncertainty, and thus is an efficient
way of coding visual information. Indeed, this proposal was made by Daugman (1985)
in one of the first papers that introduced the Gabor function to visual neuroscience.

As we have seen, this explanatory strategy is formalised in neuroscience by use of
information theory. The general strategy is to work from information-theoretic first
principles to build a model of a hypothetical system which would maximise informa-
tion transmission of the sort required by the brain area in question. Then one sees how
the hypothetical optimal and real system line up with respect to neuronal response
properties and other features. If there are similarities in the properties compared, we
have an explanation of why the brain area has those properties. Note that no strong
adaptationist assumption lurks behind this kind of efficient coding explanation; rather,
it is a “methodological adaptationism” of the sort described by Godfrey-Smith (2001).
It is not assumed that actual response properties of V1 must be optimal, but simply that
it is explanatorily relevant to compare properties of the actual system to hypothetical
optimal systems. Since it is well recognised that it is metabolically costly to sustain
neural tissue, at high firing rates (Lennie 2003), it is acceptable to assume that the
“design” of the nervous system is constrained by metabolic factors such that, where
possible, neurons and circuits are arranged to ensure that each neuron transmits the
most information for the least energy investment (Laughlin 2001). Thus one back-
ground assumption is that there is some set of processes at work—in evolutionary,
developmental, and even short-term time frames (Wainwright et al. 2001, p. 410)—
which have some tendency to optimize solutions to coding problems. The specification
of these processes is outside the remit of the efficient coding explanation. But such
explanations do imply that if the problem were to vary in such a way that it had a dif-
ferent optimal solution, then observed properties of the actual system would also vary.

It follows that efficient coding explanations delineate a set of counterfactual depen-
dencies between input to the system (e.g. sensory information) and/or system require-
ments (e.g. task for which information is needed) and the computational properties
of the system. For example, if one imagines that the V1 code had no requirement for

24 And see Dayan and Abbott (2001, pp. 135–141) and Doi et al. (2012) for efficient coding explanations
of retinal ganglion cell RF’s.

123



Synthese (2014) 191:127–153 147

spatial frequency information, then one would predict that the RFs would be differ-
ent such that they minimised uncertainty about position alone. So the uncertainty-
minimising explanation of V1 RF properties turns out to address “what-if-things-had-
been-different questions” or “w-questions” (Woodward 2003).

The dependency relationship between sensory information and normalisation has
been explored empirically and computationally and been shown to support interven-
tions. Wainwright et al. (2001) show that the specific decorrelation strategy employed
by early visual codes is dependent on the kinds of statistical dependencies present in
natural images, and that changes in decorrelation strategy can occur in a short-term
time frame, as adaptational effects. So this efficient coding explanation turns out to be
a causal one according to Woodward’s (2003) interventionist theory, which is widely
accepted in the mechanist philosophy of neuroscience literature (e.g. Craver 2007;
Kaplan and Craver 2011).

It is worth making the comparison between the kind of causal explanation that I
am describing and Mayr’s (1961) notion of ultimate causal explanation, as distinct
from proximal causal explanations. Typically, the proximal explanation describes the
mechanism by which a particular feature or behaviour of an organism comes about.
To take the example of V1 RFs, the proximal explanation for their properties would
be in terms of the particular excitatory and inhibitory inputs the neurons receive, and
their distinctive biophysical makeup—dendrite configuration, ion channels, etc. Note
that this is the kind of explanation that Kaplan (2011) takes to be the only possible
explanation of RF’s in the retina. But that is to assume that there is just one kind
of causal story to be told about a system (cf. Piccinini and Craver 2011). Mayr’s
view was that ultimate causal explanations which refer to evolutionary principles are
an important supplement to reductive, proximal accounts (Beatty 1994). Ultimate
explanations refer to causal factors that were significant in the evolutionary, and in
our case developmental or recent stimulus history of the organism, and have led to the
behavior or feature now observed. Yet, they do not describe a causal path leading to
any current instantiation of the behavior or feature and so can easily be distinguished
from local mechanistic explanations.

6 Lessons, levels and perspectives

The main thrust of this paper has been to endorse a claim for the distinctness of
computational explanation in neuroscience. While Kaplan (2011) considered only
Cummins’ (1983) version of the distinctness thesis (C3), I have shown that many
computational neuroscientists clearly distinguish between mechanistic and compu-
tational explanations, and that this distinction is characterised by efficient coding
explanations, rather than generic functional explanations. The efficient coding expla-
nations described above are non-mechanistic in that they break with Kaplan’s 3M and
MDB criteria. Nonetheless, they are still causal explanations according to Woodward’s
interventionist theory. The kinds of efficient coding explanation I have described do
align closely with patterns of non-mechanistic explanation in biology, as was evident
in the comparison with Mayr’s concept of ultimate explanation. Many philosophers
of biology have argued that teleological explanation is an important supplement to
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mechanistic approaches (see Allen et al. 1998). So if a proponent of the mechanist
approach to computational neuroscience chose to resist my argument by denying the
explanatory status of I-minimal models, she risks committing herself to the claim that
numerous non-mechanistic models in biology are non-explanatory.

In effect, the mechanists who hold that computational explanation in neuroscience
and cognitive science is just a form of mechanistic explanation are advocating explana-
tory monism. In contrast, I urge the reader to consider a kind of explanatory pluralism
whereby the same system in neuroscience can be represented and modelled in a vari-
ety of different ways, depending on the particular purposes of the investigation. These
different perspectives on a system need not be in competition and may well be com-
plementary (Mitchell 2002; Giere 2006). Both computational and mechanistic models
have a place.25 In order to build models of V1 for decoding fMRI data the compu-
tational perspective is primary. The challenge here is to understand the features of
V1 as an information processing system in order to “unlock the neural code”, and
not coincidentally, non-mechanistic models like the Gabor filter are important tools
for this task (Nishimoto et al. 2011). To say the brain is a computational system is
just to have a particular modelling perspective on the brain (cf. Shagrir 2010a). If the
goal of research is to develop pharmacological interventions to cure neural diseases,
mechanistic models are more valuable. And arguably both maximalist and minimal-
ist projects in neuroscience have something to offer. As Zucker (2006) urges, “while
local [i.e. small-scale, detailed and realistic] models are important, it is as important
to explore the other way around; that is, to find the right types of abstraction for
characterizing the cortical machine” (p. 217; cf. Salinas 2008).

One consequence of the perspectival pluralism just sketched here is that the issue
of levels in neuroscience is divorced from consideration of scale, size, and mereology
in general. While Marr’s (1982) tripartite division of levels is often interpreted as
mapping onto different scales, which themselves track the neuroscience-psychology
boundary26—the implementation (mechanistic) level being associated with neuro-
science of single neurons or small circuits and the algorithmic and computational
levels being associated with psychology of the whole organism—we have seen that
this hierarchy does not track the computation-mechanism distinction within neuro-
science. Single neurons may be treated both as intricate biological mechanisms or as
miniature computational systems (Koch 1998).

Another lesson to be learned is that the thesis of autonomy (C1) should be reha-
bilitated rather than fully rejected. We may all agree that Johnson-Laird and Fodor
were wrong to think that a computational science of the mind could come to fruition
without regard to any developments in neurophysiology. But as Carandini and Heeger
(2012) have shown, some interesting computational properties of neural systems do
appear to be partially independent of their mechanistic realizers. And there is nothing
mysterious about this. It is useful to consider the claim for the multiple realizability of
neural computations as simply a claim about where the interesting regularities show
up in neural systems (Carandini 2012). That is, if one looks at the brain purely from

25 I would consider the dynamical systems approach to be another distinct perspective (e.g. Buzsáki 2006;
Chemero and Silberstein 2008; Izhikevich 2010), though there is not time to discuss this here.
26 This is Kaplan’s (2011) interpretation, but see Shagrir (2010b) for an alternative reading of Marr.
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the mechanistic perspective one sees a dauntingly heterogeneous array of biological
to-ings and fro-ings, which often have no obvious connection to cognition or behav-
iour. Yet if one examines the brain from the computational perspective one sees that
various mechanisms have a shared computational function that can, in turn, be related
to cognition and behaviour.

To conclude, there has been an expansionist current to recent attempts to bring
mechanistic philosophy of neuroscience into the new territory of computational, cog-
nitive and systems research. As Kaplan and Craver (2011, p. 611) write:

Given that one expects cognitive mechanisms ultimately to be composed of
lower-level mechanisms of this [biophysical] sort, in a manner that might be
illustrated in a telescoping hierarchy of mechanisms and their components, it
would be most tidy and parsimonious if the ideal of mechanistic explanation were
to be extended from top to bottom across all fields in neuroscience. Our intended
opponent suggests that cognitive and systems neuroscientists should abandon
this set of explanatory ideals in favor of an alternative form of explanation. This
suggestion, if it is to have content, should come with principled reasons for
abandoning those ideals of explanation.

One principled reason why we are likely to need multiple perspectives is, simply put,
because the brain is complex (cf. Mitchell 2002, 2009). Cognitive neuroscience has
to contend with systems of unparalleled complexity, even by the impressive standards
of the rest of biology. There are approximately 86 billion neurons in the brain, with
trillions of synaptic connections between them (Azevedo et al. 2009). When faced
with such challenges, the standard scientific response is to simplify the problem space:
restrict attention to a limited range of causally significant components and forget about
trying to model all of them; leave out most of descriptive details of these selected
components, and approximately describe their dominant behaviours; search for some
mathematically convenient equations to describe the system’s internal dynamics, even
at the expense of precise data-fitting. Needless to say, these are the techniques of
minimal modelling described in the most general terms. If one is tempted to reply
that these methods devised to handle complexity are “merely pragmatic” concerns
and not of central interest in the philosophy of science, I suggest that a heavy dose
of reality would be most helpful at this stage of the debate; for what I am describing
is a prominent feature of the scientific method and thus should be a central concern
for philosophers of science. Mathematical physicist Barenblatt (1996), advises that,
“the crucial step in any field of research is to establish what is the minimum amount
of information that we actually require about the phenomenon being studied” (quoted
in Batterman 2002). Not coincidentally, the same sentiment is echoed in the literature
on canonical neural computation: “the computer analogy illustrates a general rule in
science, which is to seek an appropriate level of description” (Carandini 2012, p. 507).
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