Skip to main content
Log in

QTAIM and ELF topological analyses of zinc-amido complexes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The structures of three dinuclear zinc-amido complexes, involved in the very first step of the preparation of zinc oxide nanoparticles via an organometallic route, have been investigated by density functional theory computational studies. The various zinc–nitrogen and zinc–cyclohexyl bonds are finely characterized using quantum theory of atoms in molecules and electron localization function (ELF) topological analyses. The results are compared to the topological analyses of parent zinc-amido or zinc-alkyl complexes, for which an experimental structure has been already reported. The original two-component dative zinc-amido bond is unravelled by ELF topological analysis. Fukui indices condensed on the ELF basins allow for the comparison of the chemical reactivity of the three dinuclear zinc-amido complexes. The larger sensitivity to electrophilic attack of the terminal zinc-amido bonds with respect to the bridging intracyclic zinc-amido bonds or with respect to the terminal zinc–cyclohexyl bonds is evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.L. Kahn, A. Glaria, C. Pages, M. Monge, L. Saint Macary, A. Maisonnat, B. Chaudret, J. Mater. Chem. 19, 4044 (2009)

    Article  CAS  Google Scholar 

  2. Z. Zhao, Y. Coppel, J. Fitremann, P. Fau, C. Roux, C. Lepetit, P. Lecante, J.-D. Marty, C. Mingotaud, M.L. Kahn, Chem. Mater. 30, 8959 (2018)

    Article  CAS  Google Scholar 

  3. R.F.W. Bader, in Atoms in Molecules (Clarendon Press, Oxford, 1990)

  4. R.F.W. Bader, H. Essen, J. Chem. Phys. 80, 1943 (1984)

    Article  CAS  Google Scholar 

  5. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5379 (1990)

    Google Scholar 

  6. B. Silvi, A. Savin. Nature 371, 683 (1994)

    Article  CAS  Google Scholar 

  7. B. Silvi, I. Fourré, M.E. Alikhani, Monatsh. Chem. 136, 855 (2005)

    Article  CAS  Google Scholar 

  8. C. Lepetit, P. Fau, K. Fajerwerg, M.L. Kahn, B. Silvi, Coord. Chem. Rev. 345, 150 (2017)

    Article  CAS  Google Scholar 

  9. B. de Courcy, L.G. Pedersen, O. Parisel, N. Gresh, B. Silvi, J. Pilmé, J.P. Piquemal, J. Chem. Theory Comput. 6, 1048 (2010)

    Article  Google Scholar 

  10. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049 (1984)

    Article  CAS  Google Scholar 

  11. F.A. Bulat, E. Chamorro, P. Fuentealba, A. Toro-Labbé, J. Phys. Chem. 108, 342 (2004)

    Article  CAS  Google Scholar 

  12. W. Tiznado, E. Chamorro, R. Contreras, P. Fuentealba, J. Phys. Chem. 109, 3220 (2005)

    Article  CAS  Google Scholar 

  13. W.S. Rees Jr., D.M. Green, W. Hesse, Polyhedron 11, 1697 (1992)

    Article  CAS  Google Scholar 

  14. N.A. Bell, H.M.M. Shearer, C.B. Spencer, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 39, 1182 (1983)

    Article  Google Scholar 

  15. A.D. Pajerski, G.L. BergStresser, M. Parvez, H.G. Richey Jr., J. Am. Chem. Soc. 110, 4844 (1988)

    Article  CAS  Google Scholar 

  16. J. Krahmer, R. Beckhaus, W. Saak, D. Hasse, Z. Anorg. Allg. Chem. 634, 1696 (2008)

    Article  CAS  Google Scholar 

  17. R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 39, 2360 (2000)

    Article  CAS  Google Scholar 

  18. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)

    Article  CAS  Google Scholar 

  19. P. Macchi, D.M. Proserpio, A. Sironi, J. Am. Chem. Soc. 120, 13429 (1998)

    Article  CAS  Google Scholar 

  20. C. Lepetit, B. Vabre, Y. Canac, M.E. Alikhani, D. Zargarian, Theor. Chem. Acc. 137, 141 (2018)

    Article  Google Scholar 

  21. M. Boukallaba, B. Kerkeni, C. Lepetit, D. Berthomieu, J. Mol. Model. 22, 301 (2016)

    Article  Google Scholar 

  22. M. Puyo, E. Lebon, L. Vendier, M.L. Kahn, P. Fau, K. Fajerwerg, C. Lepetit, Inorg. Chem. 59, 4328 (2020)

    Article  CAS  Google Scholar 

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  24. P.-M. Chassaing, F. Demangeot, V. Paillard, A. Zwick, N. Combe, Phys. Rev. B 77, 153306 (2008)

    Article  Google Scholar 

  25. S. Noury, X. Krokidis, F. Fuster, B. Silvi, Comput. Chem. 23, 597 (1999)

    Article  CAS  Google Scholar 

  26. Molekel 4.3 from CSCS: http://www.cscs.ch/molekel/

  27. T.A. Keith, AIMAll (Version 17.11.04), TK Gristmill Software, Overland Park KS, USA, aim.tkgristmill.com

  28. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 285, 170 (1998)

    Article  CAS  Google Scholar 

  29. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett. 336, 457 (2001)

    Article  CAS  Google Scholar 

  30. J. Poater, M. Duran, M. Sola, B. Silvi, Chem. Rev. 105, 3911 (2005)

    Article  CAS  Google Scholar 

  31. B. Silvi, R.J. Gillespie, C. Gatti, Compr. Inorgan. Chem. II 9, 187 (2013)

    CAS  Google Scholar 

  32. B. Silvi, Phys. Chem. Chem. Phys. 6, 256 (2004)

    Article  CAS  Google Scholar 

  33. C. Lepetit, B. Silvi, R. Chauvin, J. Phys. Chem. A 107, 464 (2003)

    Article  CAS  Google Scholar 

  34. H. Chermette, P. Boulet, S. Portmann, Rev. Mod. Quant. Chem. 2, 992 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The theoretical studies were performed using HPC resources from CALMIP (Grant 2019 [0851]]) and from GENCI-[CINES/IDRIS] (Grant 2019 [085008]). The authors wish to acknowledge the financial support of the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Lepetit.

Additional information

This manuscript is dedicated to, and in memory of, the late Prof Michel Che.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepetit, C., Kahn, M.L. QTAIM and ELF topological analyses of zinc-amido complexes. Res Chem Intermed 47, 377–395 (2021). https://doi.org/10.1007/s11164-020-04328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04328-z

Keywords

Navigation