Skip to main content
Log in

Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB

  • Regular paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cyt:

Cytochrome

MOPS:

3-(N-morpholino)propanesulfonic acid

RC:

Reaction center

Sox:

Sulfur oxidation

SQR:

Sulfide:quinone reductase

References

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221. doi:10.1016/S0005-2728(89)80251-8

    Article  PubMed  CAS  Google Scholar 

  • Chan LK, Weber TS, Morgan-Kiss RM, Hanson TE (2008) A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum). Microbiology 154:818–829. doi:10.1099/mic.0.2007/012583-0

    Article  PubMed  CAS  Google Scholar 

  • Chan LK, Morgan-Kiss RM, Hanson TE (2009) Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034. doi:10.1128/JB.01154-08

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514. doi:10.1073/pnas.132181499

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882. doi:10.1128/AEM.67.7.2873-2882.2001

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544. doi:10.1128/AEM.67.6.2538-2544.2001

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276. doi:10.1007/s00203-004-0718-9

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Bryant DA (2008) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, The Netherlands, pp 337–355

    Chapter  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951. doi:10.1099/ijs.0.02403-0

    Article  PubMed  CAS  Google Scholar 

  • Kusai A, Yamanaka T (1973a) Cytochrome c (553, Chlorobium thiosulfatophilum) is a sulphide-cytochrome c reductase. FEBS Lett 34:235–237. doi:10.1016/0014-5793(73)80801-4

    Article  PubMed  CAS  Google Scholar 

  • Kusai K, Yamanaka T (1973b) The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulfatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325:304–314. doi:10.1016/0005-2728(73)90106-0

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM et al (2009) Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. Photosynth Res 99:11–21. doi:10.1007/s11120-008-9361-7

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay B, Johnson EF, Ascano M Jr (1999) Conditions for vigorous growth on sulfide and reactor-scale cultivation protocols for the thermophilic green sulfur bacterium Chlorobium tepidum. Appl Environ Microbiol 65:301–306

    PubMed  CAS  Google Scholar 

  • Ogawa T et al (2008) SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 190:6097–6110. doi:10.1128/JB.00634-08

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H, Blankenship RE (2004) Green bacteria: secondary electron donor (cytochromes). In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Academic Press, Oxford, pp 521–524

    Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1998) Membrane-bound cytochrome c z couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37:12293–12300. doi:10.1021/bi9800799

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1989) Green bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JC (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, MD, pp 1682–1707

    Google Scholar 

  • Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508. doi:10.1128/JB.183.15.4499-4508.2001

    Article  PubMed  CAS  Google Scholar 

  • Schedel M, Trüper HG (1980) Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch Microbiol 124:205–210. doi:10.1007/BF00427728

    Article  CAS  Google Scholar 

  • Schweizer HD (1993) Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834

    PubMed  CAS  Google Scholar 

  • Seo D, Sakurai H (2002) Purification and characterization of ferredoxin-NAD(P)(+) reductase from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1597:123–132

    PubMed  CAS  Google Scholar 

  • Sörbo B (1987) Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6. doi:10.1016/0076-6879(87)43003-6

    Article  PubMed  Google Scholar 

  • Stal LJ, van Gemerden H, Krumbein WE (1984) The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. J Microbiol Methods 2:295–306. doi:10.1016/0167-7012(84)90048-4

    Article  CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements in growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238. doi:10.1007/BF02046728

    Article  Google Scholar 

  • Trüper HG, Lorenz C, Schedel M, Steinmetz M (1988) Metabolism of thiosulfate in Chlorobium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Grenn photosynthetic bacteria. Plenum Press, New York, pp 189–200

    Google Scholar 

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-Oka H (2004) Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. J Biol Chem 279:51122–51130. doi:10.1074/jbc.M410432200

    Article  PubMed  CAS  Google Scholar 

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-oka H (2006) Soluble cytochrome c-554, CycA, is not essential for photosynthetic electron transfer in Chlorobium tepidum. FEBS Lett 580:2191–2194. doi:10.1016/j.febslet.2006.03.016

    Article  PubMed  CAS  Google Scholar 

  • Tsukatani Y, Azai C, Kondo T, Itoh S, Oh-Oka H (2008) Parallel electron donation pathways to cytochrome c z in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochim Biophys Acta 1777:1211–1217. doi:10.1016/j.bbabio.2008.05.002

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM, Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177:2583–2588

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90. doi:10.1007/BF00290978

    Article  CAS  Google Scholar 

  • Westley J (1987) Thiocyanate and thiosulfate. Methods Enzymol 143:22–25. doi:10.1016/0076-6879(87)43008-5

    Article  PubMed  CAS  Google Scholar 

  • Yoon KS, Bobst C, Hemann CF, Hille R, Tabita FR (2001) Spectroscopic and functional properties of novel 2[4Fe-4S] cluster-containing ferredoxins from the green sulfur bacterium Chlorobium tepidum. J Biol Chem 276:44027–44036. doi:10.1074/jbc.M107852200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Keiichi Fukuyama, Osaka University, for his participation in stimulating discussions and for his support during this study, and Prof. Susumu Takakuwa, Kyoto Women’s University, for his technical advice to estimate the quantity of sulfur compounds. We also thank Mr. Hirofumi Omori of Osaka University for his technical assistance with nucleotide sequencing. The study was financially supported by Grants-in-Aid for Scientific Research (C) (No. 19614008) (to H.O.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by a postdoctoral fellowship from the Japan Society for the Promotion of Science (No. 181481 to Y.T. and No. 183495 to J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirozo Oh-oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azai, C., Tsukatani, Y., Harada, J. et al. Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB. Photosynth Res 100, 57–65 (2009). https://doi.org/10.1007/s11120-009-9426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9426-2

Keywords

Navigation