Skip to main content
Log in

Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (“Chloroflexales”), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM (2002) Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 195–217

    Google Scholar 

  • Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 399–435

    Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard N-U, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411

    Article  CAS  PubMed  Google Scholar 

  • Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus—a comparative study. J Phys Chem B 105:246–255

    Article  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349

    Article  CAS  Google Scholar 

  • Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant DA (2001) The remarkable chlorosome. Proc Int Congr Photosynth 12:S1-003

    Google Scholar 

  • Frigaard N-U, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117

    Article  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A, Maresca JA, Bryant DA (2004a) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Biochemistry and biophysics of chlorophyll. Kluwer, Dordrecht (in press)

    Chapter  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Li H, Milks KJ, Bryant DA (2004b) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004c) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Sakuragi Y, Bryant DA (2004d) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. In: Carpentier R (ed) Photosynthesis research protocols. (Methods in molecular biology series) Humana, Totowa (in press)

    Chapter  CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001a) Phylum BXI. Chlorobi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York Berlin Heidelberg, pp 601–623

    Google Scholar 

  • Garrity GM, Holt JG (2001b) Phylum BVI. Chloroflexi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York Berlin Heidelberg, pp 427–446

    Google Scholar 

  • Gich F, Airs RL, Danielsen M, Keely BJ, Abella CA, Garcia-Gil J, Miller M, Borrego CM (2003) Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp strain UdG9001. Arch Microbiol 180:417–426

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Gantt E (2000) Is photosynthesis really derived from purple bacteria? J Phycol 36:983–985

    Article  Google Scholar 

  • Griesbeck C, Schütz M, Schödl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide–quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry 41:11552–11565

    Article  CAS  PubMed  Google Scholar 

  • Gruber TM, Bryant DA (1998) Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus. Arch Microbiol 170:285–296

    Article  CAS  PubMed  Google Scholar 

  • Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82:240–246

    CAS  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Hanson TE, Tabita FR (2003) Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth Res 78:231–248

    Article  CAS  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Misawa N, Saito T, Sandmann G (1994) A novel carotenoid biosynthesis gene coding for ζ-carotene desaturase—functional expression, sequence and phylogenetic origin. Plant Mol Biol 24:369–379

    CAS  PubMed  Google Scholar 

  • Madigan MT, Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122:782–784

    CAS  PubMed  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ros Ponsatí M, Frigaard N-U, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Planells A, Arellano JB, Borrego CA, López-Iglesias C, Gich F, Garcia-Gil J (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90

    Article  CAS  Google Scholar 

  • Melø TB, Frigaard N-U, Matsuura K, Naqvi KR (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A 56:2001–2010

    Google Scholar 

  • Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003a) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565

    PubMed  Google Scholar 

  • Montaño GA, Wu HM, Lin S, Brune DC, Blankenship RE (2003b) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251

    Article  PubMed  Google Scholar 

  • Narita S, Taketani S, Inokuchi H (1999) Oxidation of protoporphyrinogen IX in Escherichia coli is mediated by the aerobic coproporphyrinogen oxidase. Mol Gen Genet 21:1012–1020

    Google Scholar 

  • Niedermeier G, Shiozawa JA, Lottspeich F, Feick RG (1994) The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342:61–65

    Article  CAS  PubMed  Google Scholar 

  • Ouchane S, Steunou A-S, Picaud M, Astier C (2004) Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria. J Biol Chem 279:6385–6394

    Article  CAS  PubMed  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    CAS  Google Scholar 

  • Paulsen H (1999) Carotenoids and the assembly of light-harvesting complexes. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 123–135

    Google Scholar 

  • Pierson BK, Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100:283–305

    CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Sakuragi Y, Frigaard N-U, Shimada K, Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413:172–180

    Article  CAS  PubMed  Google Scholar 

  • Steensgaard DB, Wackerbarth H, Hildebrandt P, Holzwarth AR (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 31-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386

    Article  CAS  Google Scholar 

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69

    Google Scholar 

  • Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoids composition of different strains. Arch Microbiol 168:270–276

    Article  CAS  PubMed  Google Scholar 

  • Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs CU, Golbeck JH, Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe–2S ferredoxins. Biochemistry 40:464–473

    Article  CAS  PubMed  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  CAS  PubMed  Google Scholar 

  • Yanyushin MF, Blankenship RE, del Rosario M, Brune DC (2004) Characterization of a new class of membrane-bound oxidoreductases in the green bacterium Chloroflexus aurantiacus. Int J Astrobiol 3 [Suppl 1]:49

    Google Scholar 

Download references

Acknowledgements

Research from our laboratory was supported by grant DE-FG02-94ER20137 from the United States Department of Energy to D.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels-Ulrik Frigaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigaard, NU., Bryant, D.A. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182, 265–276 (2004). https://doi.org/10.1007/s00203-004-0718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0718-9

Keywords

Navigation