Skip to main content

Advertisement

Log in

Effects of drought-induced forest die-off on litter decomposition

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Drought-induced forest die-off and subsequent species replacement may modify environmental conditions and eventually affect litter decomposition. We aimed to disentangle the effects of tree species and die-off state on litter decomposition in a mixed forest where Pinus sylvestris populations experiencing severe drought-induced die-off are being replaced by Quercus ilex.

Methods

Litter bags with leaves and fine roots from both species were placed under canopies representing three habitats of the die-off and replacement process (healthy and dead P. sylvestris and healthy Q. ilex). Mass was assessed over 3 years.

Results

Species-specific chemistry of litter (C:N ratio) had a direct effect on mass loss, but also indirect effects, attributed to the decomposer microbial community associated with a given habitat-species. In their respective original habitats, oak leaves decomposed 44 % faster than pine needles, whereas oak roots decomposed 46 % slower than pine roots.

Conclusions

Forest die-off and species replacement affected litter decomposition. This effect can have great implications in forest functioning, particularly if drought-induced die-off worsens in the next decades, according with the trend observed in the studied system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T (2012) Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems 15:1204–1218

    Article  CAS  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol 204:207–214

    Google Scholar 

  • Ayres E, Steltzer H, Berg S, Wall DH (2009a) Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–912

    Article  Google Scholar 

  • Ayres E, Steltzer H, Simmons BL et al (2009b) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610

    Article  CAS  Google Scholar 

  • Ball BA, Bradford MA, Coleman DC, Hunter MD (2009) Linkages between below and aboveground communities: Decomposer responses to simulated tree species loss are largely additive. Soil Biol Biochem 41:1155–1163

    Article  CAS  Google Scholar 

  • Barba J, Curiel Yuste J, Martínez-Vilalta J, Lloret F (2013) Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. For Ecol Manag 306:79–87

    Article  Google Scholar 

  • Bardgett RD, Manning P, Morriën E, De Vries FT (2013) Hierarchical responses of plant-soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker D, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag

  • Bigler C, Bräker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343

    Article  Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42:89–106

    Article  Google Scholar 

  • Bird JA, Torn MS (2006) Fine roots vs. needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry 79:361–382

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Antignani V et al (2010) Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Briffa KR, van der Schrier G, Jones PD (2009) Wet and dry summers in europe since 1750: evidence of increasing drought. Int J Climatol 29:1894–1905

    Article  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    Article  CAS  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M et al (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci U S A 108:1474–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnicer J, Coll M, Pons X et al (2014) Large-scale recruitment limitation in Mediterranean pines : the role of Quercus ilex and forest successional advance as key regional drivers. Glob Ecol Biogeogr 23:371–384

    Article  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics. An integrated methodology. Cambridge University Press, New York, pp 76–90

    Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM et al (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  PubMed  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition climate and litter quality. Trends Ecol Evol 10:63–66

    Article  CAS  PubMed  Google Scholar 

  • Curiel Yuste J, Peñuelas J, Estiarte M et al (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486

    Article  Google Scholar 

  • Curiel Yuste J, Barba J, Fernandez-Gonzalez AJ et al (2012) Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality. Ecol Evol 2:3016–3031

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880

  • Díaz-Pinés E, Schindlbacher A, Godino M et al (2014) Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil. Plant Soil 384:243–257

    Article  Google Scholar 

  • Flores-Rentería D, Curiel Yuste J, Rincón A et al (2015) Habitat fragmentation can modulate drought effects on the plant-soil-microbial system in Mediterranean Holm oak (Quercus ilex) forests. Microb Ecol 69:798–812

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630

    Article  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA et al (2013) Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Biochem 37:1157–1167

    Article  CAS  Google Scholar 

  • Hereş AM, Martínez-Vilalta J, Claramunt López B (2012) Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestris L.) sites in NE Iberian Peninsula. Trees 26:621–630

    Article  Google Scholar 

  • Hereter A, Sánchez JR (1999) Experimental areas of Prades and Montseny. In: Rodà F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean evergreen oak forests. Springer, Berlin, pp 15–27

    Chapter  Google Scholar 

  • Jensen KD, Beier C, Michelsen A, Emmett BA (2003) Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl Soil Ecol 24:165–176

    Article  Google Scholar 

  • Kattge J, Díaz S, Lavorel S et al (2011) TRY - a global database of plant traits. Glob Chang Biol 17:2905–2935

    Article  PubMed Central  Google Scholar 

  • Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014) Disentangling the mechanisms underlying functional differences among decomposer communities. J Ecol 102:603–609

    Article  Google Scholar 

  • Killham K (1994) The soil biota. In: Killham K (ed) Soil ecology. Cambridge University Press, p 196

  • Lenoir J, Gégout JC, Dupouey JL et al (2010) Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). J Veg Sci 21:949–964

    Article  Google Scholar 

  • Lloret F, Siscart D, Dalmases C (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Chang Biol 10:2092–2099

    Article  Google Scholar 

  • Lloret F, Escudero A, Iriondo JM et al (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Glob Chang Biol 18:797–805

    Article  Google Scholar 

  • Mariotti A (2010) Recent changes in the Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525

    Article  Google Scholar 

  • Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manag 161:247–256

    Article  Google Scholar 

  • Mclaren JR, Turkington R (2010) Plant functional group identity differentially affects leaf and root decomposition. Glob Chang Biol 16:3075–3084

    Google Scholar 

  • Mediavilla S, González-Zurdo P, García-Ciudad A, Escudero A (2011) Morphological and chemical leaf composition of Mediterranean evergreen tree species according to leaf age. Trees Struct Funct 25:669–677

    Article  Google Scholar 

  • Melillo JM, Aber J, Muratore J (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 3:621–626

    Article  Google Scholar 

  • Milcu A, Manning P (2011) All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos 120:1366–1370

    Article  Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M (2005) Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías del INIA. Serie Forestal no 13., Madrid

  • Ninyerola M, Pons X, Roure JM (2007a) Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. Int J Climatol 27:1231–1242

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2007b) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a geographic information system. Theor Appl Climatol 89:195–209

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Parton W, Silver WL, Burke IC et al (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DepRoy S (2009) Linear and nonlinear mixed effects models. R package version 3.1-96

  • Poyatos R, Aguadé D, Galiano L et al (2013) Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol 200:388–401

    Article  CAS  PubMed  Google Scholar 

  • Prentice I, Farquhar G, Fasham M (2001) The carbon cycle and atmospheric carbon dioxide. In: Pitelka L, Rojas AR (eds) Climate change 2001: the scientific basis. GRID-Arendal in 2003., pp 183–237

    Google Scholar 

  • Santa Regina I (2001) Litter fall, decomposition and nutrient release in three semi-arid forests of the Duero basin, Spain. Forestry 74:347–358

    Article  Google Scholar 

  • Saura-Mas S, Estiarte M, Peñuelas J, Lloret F (2012) Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environ Exp Bot 77:274–282

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, et al. (eds) (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451

    Article  PubMed  Google Scholar 

  • Strickland MS, McCulley RL, Bradford MA (2013) The effect of a quorum-quenching enzyme on leaf litter decomposition. Soil Biol Biochem 64:65–67

    Article  CAS  Google Scholar 

  • Tardy V, Chabbi A, Charrier X et al (2015) Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One 10:e0130672

    Article  PubMed  PubMed Central  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Article  Google Scholar 

  • Vayreda J, Gracia M, Martinez-Vilalta J, Retana J (2013) Patterns and drivers of regeneration of tree species in forests of peninsular Spain. J Biogeogr 40:1252–1265

    Article  Google Scholar 

  • Vilà-Cabrera A, Martínez-Vilalta J, Galiano L, Retana J (2013) Patterns of forest decline and regeneration across Scots pine populations. Ecosystems 16:323–335

    Article  Google Scholar 

  • Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107

    Article  PubMed  Google Scholar 

  • Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J Ecol 96:727–736

    Article  CAS  Google Scholar 

  • Waksman SA, Gerretsen FC (1931) Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms. Ecology 12:33–60

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microb Ecol 52:716–724

    Article  CAS  PubMed  Google Scholar 

  • Waldrop MP, Zak DR (2004) Divergent responses of soil microbial activity and soil C storage to atmospheric N deposition suggests decomposer communities are not functionally redundant. Ecol Soc Am Annu Meet Abstr 89:527

    Google Scholar 

  • Wallenstein MD, Haddix ML, Ayres E et al (2013) Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation. Soil Biol Biochem 57:311–319

    Article  CAS  Google Scholar 

  • Wang H, Liu S, Mo J (2010) Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant Soil 335:289–298

    Article  CAS  Google Scholar 

  • Wang W, Zhang X, Tao N et al (2014) Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China. Plant Soil 374:677–688

    Article  CAS  Google Scholar 

  • Wickings K, Grandy AS, Reed SC, Cleveland CC (2012) The origin of litter chemical complexity during decomposition. Ecol Lett 15:1180–1188

    Article  PubMed  Google Scholar 

  • Wilkinson SC, Anderson JM, Scardelis SP et al (2002) PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol Biochem 34:189–200

    Article  CAS  Google Scholar 

  • Yuan Z, Gazol A, Wang X et al (2012) What happens below the canopy? Direct and indirect influences of the dominant species on forest vertical layers. Oikos 121:1145–1153

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank I. Azcoitia, G. Barba, M. Gol and C. Recasens for help in fieldwork and sample processing, and J. Martínez-Vilalta for his valuable comments. We thank the anonymous referees for all their constructive comments and advice. This study was supported by the Spanish Government projects CGL2009-08101, CGL2010-16373, CGL2012-32965 and CGL2013-42271-P, by the Government of Catalonia grants (2009-SGR-00247 and 2014-SGR-453) and by the TRY initiative on plant traits (http://www.try-db.org). JB was supported by an FPI scholarship (BES-2010-036558) from the Spanish Ministry of Economy and Competitiveness. JCY acknowledges the support of the “Ramon y Cajal” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Barba.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Sup. Figure 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barba, J., Lloret, F. & Yuste, J.C. Effects of drought-induced forest die-off on litter decomposition. Plant Soil 402, 91–101 (2016). https://doi.org/10.1007/s11104-015-2762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2762-4

Keywords

Navigation