Skip to main content
Log in

Fine Roots vs. Needles: A Comparison of 13C and 15N Dynamics in a Ponderosa Pine Forest Soil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Plant allocation patterns may affect soil C and N storage due to differences in litter quality and the depth of plant C and N inputs into the soil. We studied the dynamics of dual-labeled (13C/15N) Pinus ponderosa needles and fine roots placed at two soil depths (O and A horizon) in a temperate conifer forest soil during 2 y. Input of C as fine roots resulted in much more C retained in soil (70.5 ± 2.2% of applied) compared with needle C (42.9 ± 1.3% of applied) after 1.5 y. Needles showed faster mass loss, rates of soil 13CO2 efflux, and more 15N immobilized into microbial biomass than did fine roots. The larger proportion of labile C compounds initially present in needles (17% more needle C was water soluble than in fine roots) likely contributed to its shorter C residence time and greater degree of transformation in the soil. A double exponential decay function best described the rate of 13C loss, with a smaller initial pulse of C loss from fine roots (S1k1) and a slower decay rate of the recalcitrant C pool for fine roots (0.03 y−1) compared with (0.19 y−1) for needles. Soil 13C respiration, representing heterotrophic respiration of litter C, was much more seasonal from the O horizon than from the A. However, offsetting seasonal patterns in 13C dynamics in the O horizon resulted in no net effect of soil depth on total 13C retention in the soil after 1.5 y for either litter. Almost 90% of applied litter N was retained in the soil after 1.5 y, independent of litter quality or soil depth. Very small amounts of 13C or 15N (<3% of applied) moved to the horizon above or below the placement depth (i.e., O to A or A to O). Our results suggest that plant allocation belowground to fine roots results in more C retained and less N mineralized compared with allocation aboveground to needles, primarily due to litter quality differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFE:

chloroform fumigation extraction

DED:

double exponential decay

IRMS:

isotope ratio mass spectrometer

SED:

single exponential decay

SOM:

soil organic matter

References

  • J.D. Aber J.M. Melillo C.A. McClaugherty (1990) ArticleTitlePredicting long-term patterns of mass loss, nitrogen dynamics and soil organic matter formation from initial litter chemistry in temperate forest ecosystems Can. J. Bot. 68 2201–2208

    Google Scholar 

  • R. Aerts (1997) ArticleTitleClimateleaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship Oikos 79 439–449

    Google Scholar 

  • J.A. Bird C. Kessel Particlevan W.R. Horwath (2003) ArticleTitleStabilization of 13C-carbon and immobilization of 15N-nitrogen from rice straw in humic fractions Soil Sci. Soc. Am. J. 67 806–815 Occurrence Handle10.2136/sssaj2003.0806

    Article  Google Scholar 

  • P.C. Brookes J.F. Kragt D.S. Powlson D.S. Jenkinson (1985a) ArticleTitleChloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature Soil Biol. Biochem. 17 831–835 Occurrence Handle10.1016/0038-0717(85)90143-9

    Article  Google Scholar 

  • P.C. Brookes A. Landman G. Pruden D.S. Jenkinson (1985b) ArticleTitleChloroform fumigation and the release of soil nitrogen: a rapid and direct extraction method for measuring microbial biomass nitrogen in soil Soil Biol. Biochem. 17 837–842 Occurrence Handle10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  • M.L. Cabrera M.H. Beare (1993) ArticleTitleAlkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts Soil Sci. Soc. Am. J. 57 1007–1012 Occurrence Handle10.2136/sssaj1993.03615995005700040021x

    Article  Google Scholar 

  • H. Chen M.E. Harmon J. Sexton B. Fasth (2002) ArticleTitleFine root decomposition and N dynamics in coniferous forest of the Pacific Northwest U.S.A. Can. J. For. Res. 32 320–331 Occurrence Handle10.1139/x01-202

    Article  Google Scholar 

  • R.K. Dixon S. Brown R.A. Houghton A.M. Solomon M.C. Trexler J. Wisniewski (1994) ArticleTitleCarbon pools and flux of global forest ecosystems Science 263 185–190

    Google Scholar 

  • M.E. Dornbush T.M. Isenhart J.W. Raich (2002) ArticleTitleQuantifying fine-root decomposition: an alternative to buried litterbags Ecology 83 2985–2990

    Google Scholar 

  • T.J. Fahey M.A. Arthur (1994) ArticleTitleFurther studies of root decomposition following harvest of a Northern Hardwood Forest For. Sci. 40 618–629

    Google Scholar 

  • T.J. Fahey J.W. Huhges P. Mou M.A. Arthur (1988) ArticleTitleRoot decomposition and nutrient flux following whole tree harvest of Northern Hardwood Forest For. Sci. 34 744–768

    Google Scholar 

  • J.B. Gaudinski S.E. Trumbore E.A. Davidson S. Zheng (2000) ArticleTitleSoil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes Biogeochemisty 51 33–69 Occurrence Handle10.1023/A:1006301010014

    Article  Google Scholar 

  • H.L. Gholz D.A. Wedin S.M. Smitherman M.E. Harmon W.J. Parton (2000) ArticleTitleLong-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition Glob. Change Biol. 6 751–765 Occurrence Handle10.1046/j.1365-2486.2000.00349.x

    Article  Google Scholar 

  • R.A. Gill I.C. Burke (2002) ArticleTitleInfluence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe Plant Soil 241 233–242 Occurrence Handle10.1023/A:1016146805542

    Article  Google Scholar 

  • G.K. Girisha L.M. Condron P.W. Clinton M.R. Davis (2003) ArticleTitleDecomposition and nutrient dynamics of green and freshly fallen radiata pine (Pinus radiata) needles For. Ecol. Manage. 179 169–181 Occurrence Handle10.1016/S0378-1127(02)00518-2

    Article  Google Scholar 

  • W.F. Harris R.S. Kinerson N.T. Edwards (1977) ArticleTitleComparison of belowground biomass of natural deciduous forests and loblolly pine plantations Pedobiologia 17 369–381

    Google Scholar 

  • S.C. Hart M.K. Firestone E.A. Paul (1992) ArticleTitleDecomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate Can. J. For. Res. 22 306–313

    Google Scholar 

  • R.L. Hendrick K.S. Pregitzer (1992) ArticleTitleThe demography of fine roots in hardwood forests Ecology 73 1094–1104 Occurrence Handle10.2307/1940183

    Article  Google Scholar 

  • R.L. Hendrick K.S. Pregitzer (1996) ArticleTitleTemporal and depth related patterns of fine root dynamics in northern hardwood forests J. Ecol. 84 167–176 Occurrence Handle10.2307/2261352

    Article  Google Scholar 

  • S.E. Hobbie (1996) ArticleTitleTemperature and plant species control over litter decomposition in Alaskan Tundra Ecol. Monog. 66 503–522 Occurrence Handle10.2307/2963492

    Article  Google Scholar 

  • R.B. Jackson H.A. Mooney E.D. Schultz (1997) ArticleTitleA global budget for fine root biomass, surface area and nutrient contents Proc. Natl. Acad. Sci. USA 94 7362–7366 Occurrence Handle10.1073/pnas.94.14.7362

    Article  Google Scholar 

  • Janitzski P. 1986. Cation exchange capacity. In: Singer M.J. (ed.), Field and Laboratory Procedures Used Soil in Chronosequence Studies. U.S. Geological Survey Bulletin 1648, p. 34.

  • D.S. Jenkinson (1988) The determination of microbial biomass carbon and nitrogen in soil J.R. Wilson (Eds) Advances in Nitrogen Cycling in Agricultural Ecosystems C.A.B. International Wallingford 368–386

    Google Scholar 

  • J.D. Joslin G.S. Henderson (1987) ArticleTitleOrganic matter and nutrients associated with fine root turnover in a white oak stand For. Sci. 33 330–346

    Google Scholar 

  • C.D. Keeling (1958) ArticleTitleThe concentration and isotopic abundances of atmospheric carbon dioxide in rural areas Geochem. Cosmochem. Acta. 13 322–334 Occurrence Handle10.1016/0016-7037(58)90033-4

    Article  Google Scholar 

  • I. Kögel-Knabner (2002) ArticleTitleThe macromolecular organic composition of plant and microbial residues as inputs to soil organic matter Soil Biol. Biochem. 34 139–162 Occurrence Handle10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • C. Kurz M.-M. Coûteaux J.M. Thiéry (2000) ArticleTitleResidence time and decomposition rate of Pinus pinaster needles in a forest floor from direct field measurements under a Mediterranean climate Soil Biol. Biochem. 32 1197–1206 Occurrence Handle10.1016/S0038-0717(00)00036-5

    Article  Google Scholar 

  • J.N. Ladd M. Amato P.R. Grace J.A. Veen Particlevan (1995) ArticleTitleSimulation of 14C turnover through microbial biomass in soils incubated with 14C plant residues Soil Biol. Biochem. 27 777–783 Occurrence Handle10.1016/0038-0717(94)00243-T

    Article  Google Scholar 

  • J.A. Langley B.A. Hungate (2003) ArticleTitleMycorrhizal controls on belowground litter quality Ecology 84 2302–2312

    Google Scholar 

  • W.M. Loya L.C. Johnson K.J. Nadelhoffer (2004) ArticleTitleSeasonal dynamics of leaf- and root-derived C in arctic tundra mesocosms Soil Biol. Biochem. 36 655–666 Occurrence Handle10.1016/j.soilbio.2003.11.009

    Article  Google Scholar 

  • C.A. McClaugherty J.D. Aber J.M. Melillo (1982) ArticleTitleThe role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems Ecology 63 1481–1490 Occurrence Handle10.2307/1938874

    Article  Google Scholar 

  • J.M. Melillo J.D. Aber J.F. Muratore (1982) ArticleTitleNitrogen and lignin control of hardwood leaf litter decomposition dynamics Ecology 63 621–626 Occurrence Handle10.2307/1936780

    Article  Google Scholar 

  • R.L. Mulvaney (1996) Nitrogen: inorganic forms D.L. Sparks (Eds) Methods of Soil Analysis: Part 3, Chemical Methods. Number 5 ASSA and SSSA Madison, Wisconsin 1123–1184

    Google Scholar 

  • D.W. Nelson L.E. Sommers (1982) Total carbon, organic carbon and organic matter A.L. Page (Eds) Methods of Soil Analysis: Part 2, Agron. Monograph 9 EditionNumber2 ASSA and SSSA Madison, WI 539–594

    Google Scholar 

  • R.J. Norby R.B. Jackson (2000) ArticleTitleRoot dynamics and global change: seeking an ecosystem perspective New Phytol. 147 3–12 Occurrence Handle10.1046/j.1469-8137.2000.00676.x

    Article  Google Scholar 

  • R. Ostertag S.E. Hobbie (1999) ArticleTitleEarly stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability Oecologia 121 564–573 Occurrence Handle10.1007/s004420050963

    Article  Google Scholar 

  • E. Paul F.E. Clark (1996) Soil Microbiology and Biochemistry EditionNumber2 Academic Press, Inc. New York 340

    Google Scholar 

  • J.W. Raich K.J. Nadelhoffer (1989) ArticleTitleBelowground carbon allocation in forest ecosystems: global trends Ecology 70 1346–1354 Occurrence Handle10.2307/1938194

    Article  Google Scholar 

  • P. Rovira V.R. Vallejo (1997) ArticleTitleOrganic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth Soil Biol. Biochem. 29 1509–1520 Occurrence Handle10.1016/S0038-0717(97)00052-7

    Article  Google Scholar 

  • P. Rovira V.R. Vallejo (2002) ArticleTitleMineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial Soil Biol. Biochem. 34 327–339 Occurrence Handle10.1016/S0038-0717(01)00186-9

    Article  Google Scholar 

  • M.G. Ryan M.M. Melillo A. Ricca (1990) ArticleTitleA comparison of methods for determining proximate carbon fractions of forest litter Can. J. For. Res. 20 166–171

    Google Scholar 

  • W.L. Silver R.K. Miya (2001) ArticleTitleGlobal patterns of root decomposition: comparisons of climate and litter quality effects Oecologia 129 407–419

    Google Scholar 

  • InstitutionalAuthorNameSoil Survey Staff (1999) Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed. Agricultural Handbook No. 436 US Department of Agriculture and Natural Resources Conservation ServiceUS Gov. Print. Office Washington, DC 869

    Google Scholar 

  • J.M. Stark S.C. Hart (1996) ArticleTitleDiffusion technique for preparing salt solutions, kjeldahl digests, and persulfate digests for nitrogen-15 analysis Soil Sci. Soc. Am. J. 60 1846–1855 Occurrence Handle10.2136/sssaj1996.03615995006000060033x

    Article  Google Scholar 

  • R.B. Strauss (1982) Denitrification in a coniferous forest soil Univ. of California Berkeley

    Google Scholar 

  • M. Stuiver H.A. Polach (1977) ArticleTitleReporting of 14C data Radiocarbon 19 355–363

    Google Scholar 

  • B.R. Taylor C.E. Prescott W.F.J. Parsons D. Parkinson (1991) ArticleTitleSubstrate control of litter decomposition in four Rocky Mountain coniferous forests Can. J. Bot. 69 2242–2250

    Google Scholar 

  • M.S. Torn S. Davis J.A. Bird M.R. Shaw M. Conrad (2003) ArticleTitleAutomated analyses of 13C/12C ratios in CO2dissolved inorganic carbon for ecological and environmental applications Rapid Commun. Mass Spectrom. 17 2575–2582 Occurrence Handle10.1002/rcm.1246

    Article  Google Scholar 

  • M.S. Torn A.G. Lapenis A. Timofeev M. Fischer I. Babikov J. Harden (2002) ArticleTitleOrganic carbon and carbon isotopes in modern and 100-year-old soil archives of the Russian steppe Glob. Change Biol. 8 941–953 Occurrence Handle10.1046/j.1365-2486.2002.00477.x

    Article  Google Scholar 

  • M.S. Torn P.M. Vitousek S.E. Trumbore (2005) ArticleTitleThe influence of nutrient availability on soil organic matter turnover estimated by incubations and radiocarbon modeling Ecosystems 8 352–372 Occurrence Handle10.1007/s10021-004-0259-8

    Article  Google Scholar 

  • M.S. Torn S.E Trumbore O.A. Chadwick P.M. Vitousek D.M. Hendricks (1997) ArticleTitleMineral control of organic C storage and turnover Nature 389 170–173 Occurrence Handle10.1038/38260

    Article  Google Scholar 

  • S.E. Trumbore (1993) ArticleTitleComparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements Glob. Biogeochem. Cycles 7 275–290 Occurrence Handle10.1029/93GB00468

    Article  Google Scholar 

  • D. Dam ParticleVan E. Veldkamp N. Breemen Particlevan (1997) ArticleTitleSoil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica Biogeochemistry 39 343–375 Occurrence Handle10.1023/A:1005880031579

    Article  Google Scholar 

  • E.D. Vance P.C. Brookes D.S. Jenkinson (1987) ArticleTitleAn extraction method for measuring microbial biomass C Soil Biol. Biochem. 19 703–707 Occurrence Handle10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  • J.S. Vogel (1992) ArticleTitleA rapid method for preparation of biomedical targets for AMS Radiocarbon 34 344–350

    Google Scholar 

  • K.A. Vogt C.C. Grier D.J. Vogt (1986) ArticleTitleProduction, turnoverand nutrient dynamics of above- and below-ground detritus of world forest Adv. Ecol. Res. 15 303–377 Occurrence Handle10.1016/S0065-2504(08)60122-1

    Article  Google Scholar 

  • K.A. Vogt R.A. Dahlgren F. Ugolini D. Zabowski E.E. Moore R. Zasoski (1987) ArticleTitleAbove- and below-ground: I. Contributions of Al, FeCaMg, K, Mn, CuZn, and P for Abies amabilis Tsuga mertensiana Biogeochemistry 4 277–294 Occurrence Handle10.1007/BF02187371

    Article  Google Scholar 

  • R.P. Voroney E.A. Paul D.W. Anderson (1989) ArticleTitleDecomposition of wheat straw and stabilization of microbial products Can. J. Soil Sci. 69 63–77 Occurrence Handle10.4141/cjss89-007

    Article  Google Scholar 

  • D.R. Zak K.S. Pregitzer (1998) Integration of ecophysiological and biogeochemical approaches to ecosystem dynamics M.L. Pace P.M. Groffman (Eds) Success, Limitations, and Frontiers in Ecosystem Science Springer-Verlag New York 372–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Bird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, J.A., Torn, M.S. Fine Roots vs. Needles: A Comparison of 13C and 15N Dynamics in a Ponderosa Pine Forest Soil. Biogeochemistry 79, 361–382 (2006). https://doi.org/10.1007/s10533-005-5632-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-5632-y

Keywords

Navigation