Skip to main content
Log in

Dependence of Variability of Neuronal Responses in the Frog Torus Semicircularis on the Parameters of Acoustic Stimuli

  • Published:
Neurophysiology Aims and scope

Responses of neurons of various sensory nuclei to presentation of specific stimuli can be characterized not only by the mean number of action potentials (APs) in such reactions and the pattern of AP time distribution, but also by the level of repeatability of the reaction. We studied impulse responses of neurons localized in the auditory center of the midbrain of the grass frog under the action of tone segments of a characteristic frequency, with an unmodulated or modulated amplitude. The repeatability of reactions was evaluated according to the ratio between the variation of the number of APs to presentations of the signal and the mean number of APs in the response (Fano factor). Neurons differed noticeably from each other in this characteristic. In the studied sampling, we observed no close correlation between the Fano factor and the mean number of APs in the response, although in some cells such correlation may appear rather significant. In the case of the action of low-intensity signals, an increase in the intensity resulted, on average, in the improvement of repeatability of the reaction; with higher levels of the signal, this trend, however, was not maintained. Complication of the signal using amplitude modulation usually caused a decrease in the variability, although in some cells the pattern of such dependence was opposite. We found a trend toward a rise in the Fano factor with increase in the duration of the time interval of observation. We focus our attention on the correlation between stochastic reactions of separate cells of sensory systems and variability of responses of the entire organism at fixed sensory stimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Fano, “Ionization yield of radiations. II. The fluctuations of the number of ions,” Physiol. Rev., 72, No. 1, 26-29 (1947).

    Article  CAS  Google Scholar 

  2. M. C. Teich, C. Heneghan, S. B. Lowen, et al., “Fractal character of the neural spike train in the visual system of the cat,” J. Opt. Soc. Am., 14, No. 3, 529-546 (1997).

    Article  CAS  Google Scholar 

  3. N. G. Bibikov and A. B. Dymov, “Fano and Allan factors of the process of spontaneous impulse activity of acoustic neurons of the medulla oblongata,” Sensor. Syst., 23, No. 3, 246-259 (2009).

    Google Scholar 

  4. N. G. Bibikov, “Statistical straggling of the number of impulses of single neurons of the frog semicircular torus to identical signals,” Sensor. Syst., 25, No. 2, 131-142 (2011).

    Google Scholar 

  5. M. C. Teich, “Fractal character of the auditory neural spike train,” IEEE Trans. Biomed. Eng., 36, No. 1, 150-160 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. M. P. Nawrot, “Analysis and interpretation of interval and count variability in neural spike trains,” in: Analysis of Parallel Spike Trains, Vol. 7, S. Grun and S. Rotter (eds.), Springer Ser. Comput. Neurosci. (2010), pp. 37-58.

  7. U. T. Eden and M. A. Kramer, “Drawing inferences from Fano factor calculations,” J. Neurosci. Methods, 190, 149-152 (2010).

    Article  PubMed  Google Scholar 

  8. N. G. Bibikov and K. A. Semenov, “Dispersion of reactions of single neurons of the acoustic system to identical presentations of auditory signals,” in: Proceedings of the 22nd Session of RAO, Part 3, Geos, Moscow (2010), pp. 152-155.

    Google Scholar 

  9. N. G. Bibikov, “The variability of neuronal reactions of single auditory neurons to presentation of identical signals,” in: Proceedings of the Congress “Achievements of Neuroscience for Modern Medicine and Psychology,” MAKS-Press (2010), pp. 69-70.

  10. A. F. Dean, “The variability of discharge of simple cells in the cat striate cortex,” Exp. Brain Res., 44, 437-440 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. B. J. Richmond, “Stochasticity, spikes and decoding: sufficiency and utility order statistics,” Biol. Cybern., 100, 447-457 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  12. M. Gur and D. Snodderly, “High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys,” Cerebr. Cortex, 16, 888-895 (2006).

    Article  Google Scholar 

  13. M. P. Nawrot, A. Aertsen, and S. Rotter, “Elimination of response latency variability in neuronal spike trains,” Biol. Cybern., 88, 321-334 (2003).

    Article  PubMed  Google Scholar 

  14. M. M. Churchland, B. M.Yu, J. P. Cunningham, et al., “Stimulus onset quenches neural variability: a widespread cortical phenomenon,” Nat. Neurosci., 13, 369-378 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. M. W. Oram, “Visual stimulation decorrelates neuronal activity,” J. Neurophysiol., 105, 942-957 (2011).

    Article  PubMed  Google Scholar 

  16. X. Huang and S. G. Lisberger, “Circuit mechanisms revealed by spike-timing correlations in macaque area MT,” J. Neurophysiol., 109, 851-866 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  17. N. G. Bibikov, “Response of frog midbrain neurons to amplitude-modulated tones by pseudorandom noise,” Neurophysiology, 22, No. 2, 180-185 (1990).

    Article  Google Scholar 

  18. N. G. Bibikov and O. N. Grubnik, “Responses to intensity increments and decrements in different types of midbrain auditory units of the frog,” in: Acoustical Signal Processing in the Central Auditory System, Plenum Press, New York (1997), pp. 271-277.

    Google Scholar 

  19. H. M. Kaplan, “Anesthesia in amphibian and reptiles,” Proc. Fed. Am. Soc. Exp. Biol., 28, 1541-1546 (1969).

    CAS  Google Scholar 

  20. M. Zimmermann, “Ethical principles for maintenance and use of animals in neuroscience research,” Neurosci. Lett., 73, 1, (1987).

    Article  PubMed  CAS  Google Scholar 

  21. N. G. Bibikov, “Neuronal reactions of the torus semicircularis of the grass frog (Rana temporaria) to signals that reproduce time characteristics of mating call,” Zool. Zh., 59, No. 4, 577-586 (1980).

    Google Scholar 

  22. G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, 20, 959-969 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. G. Mochol, D. K. Wojcik, M. Wypych, et al., “Variability of visual responses of superior colliculus neurons depends on stimulus velocity,” J. Neurosci., 30, 3199-3209 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. P. Kara, P. Reinagel, and R. C. Reid, “Low response variability in simultaneously recorded retinal, thalamic, and cortical cells,” Neuron, 27, 635-646 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. E. Gershon, M. C. Wiener, P. E. Latham, and B. J. Richmond, “Coding strategies in monkey V1 and inferior temporal cortex,” J. Neurophysiol., 79, 1135-1144 (1998).

    PubMed  CAS  Google Scholar 

  26. C. Hussar and T. Pasternak, “Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task,” Proc. Natl. Acad. USA, 107, No. 50, 21842-2184 (2010).

    Article  Google Scholar 

  27. M. Pecka, I. Siveke, B. Grothe, and N. A. Lesica, “Enhancement of ITD coding within the initial stages of the auditory pathway,” J. Neurophysiol., 103, 38-46 (2010).

    Article  PubMed  Google Scholar 

  28. A. Vogel, R. M. Hennig, and B. Ronacher, “Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings,” J. Neurophysiol., 93, 3548-3559 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. A. Lerchner, C. Ursta, J. Hertz, et al., “Response variability in balanced cortical networks,” Neural Comput., 18, 634-659 (2006).

    Article  PubMed  Google Scholar 

  30. G. Deco and E. Hugue, “Neural network mechanisms underlying stimulus driven variability reduction,” PLoS Comput. Biol., 8, No. 3, e1002395 (2012).

  31. R. P. Gaumond, “Ratio of variance to mean of actionpotential counts for an auditory-nerve fibre model with 2nd-order refractory behavior,” J. Acoust. Soc. Am., 93, No. 4, 2035-2037 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. N. G. Bibikov and G. A. Ivanitskii, “Modeling of spontaneous impulsation and short-lasting adaptation in fibers of the acoustic nerve,” Biofizika, 30, No. 1, 141-144 (1985).

    PubMed  CAS  Google Scholar 

  33. D. P. Knudsen and T. Q. Gentner, “Active recognition enhances the representation of behaviorally relevant information in single auditory forebrain neurons,” J. Neurophysiol., 109, No. 7, 1690-1703 (2013).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G. Dependence of Variability of Neuronal Responses in the Frog Torus Semicircularis on the Parameters of Acoustic Stimuli. Neurophysiology 46, 16–24 (2014). https://doi.org/10.1007/s11062-014-9401-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-014-9401-1

Keywords

Navigation