Skip to main content
Log in

Statistical Characteristics of the Spike Activity of Neurons in the Midbrain Auditory Center in Frogs on Exposure to Tones Modulated by Low-Frequency Noise

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The time parameters of the spike activity of single neurons in the brainstem part of the auditory system carry basic information on the properties of perceived signals. To characterize these parameters, the activity of single neurons in the midbrain center (semicircular torus) of the common frog (Rana temporaria) was studied on exposure to prolonged tones amplitude-modulated with repeating bursts of low-frequency noise. Time-shuffled autocorrelation functions were calculated, these corresponding to the sum of the correlation functions between responses to all bursts presented with the exception of responses evoked by one of the bursts. This approach excludes the effects of the refractory properties of the neuron being studied, allowing the responses of a single neuron to be used to evaluate the nature of the spike activity in the local population of cells with presumptively identical properties but which are statistically independent of each other. Significant variation in the statistical characteristics of output spike activity in different cells in the semicircular toroid was found, such that signals could be characterized in terms of different time properties. Neurons with highly specific reactions to the time characteristics of the envelope were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avissar, M., Wittig, J. H., Saunders, J. C., and Parsons, T. D., “Refractoriness enhances temporal coding by auditory nerve fibers,” J. Neurosci., 33, No. 18, 7681–7690 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bibikov, N. G. and Ivanitskii, G. A., “Modeling of spontaneous spike activity and short-term adaptation in fibers of the auditory nerve,” Biofizika, 30, 141–144 (1985).

    PubMed  CAS  Google Scholar 

  • Bibikov, N. G. and Nizamov, S. V., “Analysis of the activity of auditory neurons in the frog medulla oblongata on exposure to tones modulated by low-frequency noise,” Biofizika, 54, No. 5, 921–934 (2009).

    PubMed  CAS  Google Scholar 

  • Bibikov, N. G., “Correlation of cochlear nucleus neuronal reactions with low-frequency amplitude modujlation of a tonal signal,” Akustich. Zh., 60, No. 5, 555–566 (2014a).

    Google Scholar 

  • Bibikov, N. G., “Encoding of the stimulus envelope in peripheral and central regions of the auditory system of the frog,” Acustica, 31, 310–314 (1974).

    Google Scholar 

  • Bibikov, N. G., “Envelope characteristics of sound signals extracted by neurons in the autitory center of the frog medulla oblongata,” Biofizika, 60, No. 3, 409–419 (2014b).

    Google Scholar 

  • Bibikov, N. G., “Extraction of some of the characteristics of low-frequency tonal signal envelopes by neurons in the auditory center of the frog midbrain,” Sens. Sistemy, 30, 201–214 (2016).

    Google Scholar 

  • Bibikov, N. G., “Mixed autocorrelation function for neuron spike activity,” in: Proc. 14th All-Russ. Conf. Neuroinformatics-2012, MIFI-Press (2012), p. 84–91.

  • Bibikov, N. G., “On the mutual correlation between the spike activity of neurons in the auditory pathway (an analytical review),” Sens. Sistemy, 29, No. 1, 3–12 (2015).

    Google Scholar 

  • Bibikov, N. G., “Quantitative assessment of changes in the synchronization of frog cochlear nucleus neuron reactions with the envelope of a sound signal during long-term adaptation,” Akustich. Zh., 54, No. 4, 669–681 (2008).

    Google Scholar 

  • Bibikov, N. G., “Relationship between the variability of the responses of neurons in the frog semicircular torus and acoustic stimulus parameters,” Neirofiziol. (Kiev), 46, No. 1, 18–27 (2014c).

    Google Scholar 

  • Bibikov, N. G., “Separate assessment of the effects of conditioning signal and a neuronal spike on the responses of individual neurons in the auditory system,” Sens. Sistemy, 3, No. 3, 364–369 (1990).

    Google Scholar 

  • Bibikov, N. G., Ovchinnikov, O. B., and Nizamov, S. V., “Assessment decreases in excitability after spike generation for central auditory neurons in the frog,” Biofizika, 46, No. 3, 545–554 (2001).

    PubMed  CAS  Google Scholar 

  • Brette, R., “Philosophy of the spike: rate-based vs. spike based theories of the brain,” Front. Syst. Neuroscience, https://doi.org/10.3389/fn-sys.2015.00151 (2015).

  • Chen, C., Read, H. L., and Escabi, M. A., “Precise feature based time scales and frequency decorrelation lead to a sparse auditory code,” J. Neurosci., 32, No. 25, 8454–8468 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deger, M., Helias, M., Boucsein, C., and Rotter, S., “Statistical properties of superimposed stationary spike trains,” J. Comput. Neurosci., 32, 443–463 (2012).

    Article  PubMed  Google Scholar 

  • Garcia-Lazaro, J. A., Belliveau, L. A., and Lesica, N. A., “Independent population coding of speech with sub-millisecond precision,” J. Neurosci., 33, No. 49, 19,362–19,372 (2013).

    Article  CAS  Google Scholar 

  • Gaumond, R. P., Kim, D. O., and Molnar, C. E., “Response of cochlear nerve fibers to brief acoustic stimuli: role of discharge-history effects,” J. Acoust. Soc. Am., 74, 1392–1398 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J. M. and Brown, P. B., “Responses of binaural neurons superior olivary complex dichotic tonal stimuli: some physiological mechanisms of sound localization,” J. Neurophysiol., 32, 603–536 (1969).

    Article  Google Scholar 

  • Heijden van der, M., Louage, D. H., and Joris, P. X., “Responses of auditory nerve and anteroventral cochlear nucleus fibers to broadband and narrowband noise: implications for the sensitivity to interaural delays,” J. Assoc. Res. Otolaryngol., 12, 485–502 (2011).

    Article  Google Scholar 

  • Heinz, M. G. and Swaminathan, J., “Quantifying envelope and fine-structure coding in auditory nerve responses to chimaeric speech,” J. Assoc. Res. Otolaryngol., 10, 407–423 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Joris, P. X., Louage, D. H., Cardoen L, and Heijden M., “, Correlation index: a new metric to quantify temporal coding,” Hear. Res., 216–217, 19–30 (2006).

    Article  PubMed  Google Scholar 

  • Joris, P. X., van de Sande, B., and van der Heijden, M., “Temporal damping in response to broadband noise. I. Inferior colliculus,” J. Neurophysiol., 93, 1857–1870 (2005).

    Article  PubMed  Google Scholar 

  • Kale, S., Micheyl, L., and Heinz, M. G., “Implications of within-fiber temporal coding for perceptual studies of f0 discrimination and discrimination of harmonic and inharmonic tone complexes,” J. Assoc. Res. Otolaryngol., 15, 465–482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan, H. M., “Anesthesia in amphibian and reptiles,” Proc. Fed. Am. Soc. Exp. Biol., 28, 1541–1546 (1969).

    CAS  Google Scholar 

  • Kim, D. O., Sirianni, J. G., and Chang, S. O., “Responses of DCN-PVCN neurons and auditory nerve fibers in unanesthetized cats to AM and pure tones: analysis with autocorrelation/power-spectrum,” Hear. Res., 45, 95–113 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Louage, D. H., van der Heijden, M., and Joris, P. X., “Enhanced temporal response properties of anteroventral cochlear nucleus neurons to broadband noise,” J. Neurosci., 25, 1560–1570 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Louage, D. H., van der Heijden, M., and Joris, P. X., “Temporal properties of responses to broadband noise in the auditory nerve,” J. Neurophysiol., 91, 2051–2065 (2004).

    Article  PubMed  Google Scholar 

  • Shackleton, T. M., Lui, L. F., and Palmer, A. R., “Responses to diotic, dichotic, and alternating phase harmonic stimuli in the inferior colliculus of guinea pigs,” J. Assoc. Res. Otolaryngol., 10, 76–90 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivdasani, M. N., Mauger, S. J., Rathbone, G. D., and Paolini, A. G., “Neu ral synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants,” J. Neural Eng., 065003 (2009), doi https://doi.org/10.1088/1741-2560/6/6/065003 (2009).

    Article  Google Scholar 

  • Spirou, G. A., Brownell, W. E., and Zidanic, M., “Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons,” J. Neurophysiol., 63, 1169–1190 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, L. J. and Pena, J. L., “Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls,” J. Neurosci., 31, No. 9, 3234–3242 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Street, S. E. and Manis, P. B., “Action potential timing precision in dorsal cochlear nucleus pyramidal cells,” J. Neurophysiol., 97, No. 6, 4162–4172 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Suckow, M. A., Terril, L. A., Grigdesby, C. F., and March, P. A., “Evaluation of hypothermia-induced analgesia and influence of opioid antagonists in leopard frogs (Rana pipiens),” Pharmacol. Biochem. Behav., 63, 39–43 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Truccolo, W., Hochberg, L. R., and Donoghue, J. P., “Collective dynamics in human and monkey sensorimotor cortex: predicting single neuron spikes nature,” Nat. Neurosci., 13, No. 1, 105–111 (2012).

    Article  CAS  Google Scholar 

  • Wu, J. S., Young, E. D., and Glowatzki, E., “Maturation of spontaneous firing properties after hearing onset in rat auditory nerve fibers: spontaneous rates, refractoriness, and interfiber correlations,” J. Neurosci., 36, No. 41, 10,584–10,597 (2016).

    Article  CAS  Google Scholar 

  • Yang, S., Lin, W., and Feng, A. S., “Wide-ranging frequency preferences of auditory midbrain neurons: Roles of membrane time constant and synaptic properties,” Eur. J. Neurosci., 30, No. 1, 76–90 (2009).

    Article  PubMed  Google Scholar 

  • Yang, S., Yang, S., Cox, C. L., et al., “Cell’s intrinsic biophysical properties play a role in the systematic decrease in time-locking ability of central auditory neurons,” Neuroscience, 208, No. 1, 49–57 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuste, R., “From the neuron doctrine to neural networks,” Nature Rev. Neurosci., 16, No. 8, 487–497 (2015).

    Article  CAS  Google Scholar 

  • Zimmermann, M., “Ethical principles for maintenance and use of animals in neuroscience research,” Neurosci. Lett., 73, 1 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bibikov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 2, pp. 217–230, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibikov, N.G., Nizamov, S.V. Statistical Characteristics of the Spike Activity of Neurons in the Midbrain Auditory Center in Frogs on Exposure to Tones Modulated by Low-Frequency Noise. Neurosci Behav Physi 48, 764–773 (2018). https://doi.org/10.1007/s11055-018-0628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0628-y

Keywords

Navigation