Skip to main content

Advertisement

Log in

Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Expression of angiotensin II (Ang II) and its receptors (AT1/AT2) is undetected in the mature microglia in normal brain. We report here that the immunoexpression of Ang II and AT1/AT2 was altered in activated microglia notably at 1 week in rats subjected to middle cerebral artery occlusion (MCAO). Immunolabeled activated microglia were widely distributed in the infarcted cerebral tissue after MCAO. By enzyme immunoassay, Ang II protein expression levels of the ischemic tissues were decreased drastically at 12 h after ischemia, then rose rapidly at 3 days and 1 week after MCAO when compared with the control. On the other hand, AT1 and AT2 receptor mRNA and protein levels were up-regulated after MCAO, peaking at 12 h, but declined thereafter. Expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) mRNA and protein levels was concomitantly increased. Edaravone significantly suppressed Ang II and AT1/AT2 receptor expression as well as that of TNF-α and IL-1β suggesting that microglia-derived Ang II can act through an autocrine manner via its receptor that may be linked partly to the production of proinflammatory cytokines. We conclude that neuroinflammation in MCAO may be attenuated by Edaravone which acts through suppression of expression of Ang II and its receptors and proinflammatory cytokines in activated microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thomas WG, Greenland KJ, Shinkel TA, Sernia C (1992) Angiotensinogen is secreted by pure rat neuronal cell cultures. Brain Res 588:191–200

    Article  PubMed  CAS  Google Scholar 

  2. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L (2010) Angiotensin II sustains brain inflammation in mice via TGF-β. J Clin Invest 120:2782–2794

    Article  PubMed  CAS  Google Scholar 

  3. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669

    Article  PubMed  CAS  Google Scholar 

  4. Dai WJ, Funk A, Herdegen T, Unger T, Culman J (1999) Blockade of central angiotensin AT (1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke 30:2391–2398

    Article  PubMed  CAS  Google Scholar 

  5. Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M, Seidel K, Dirnagl U, Unger T (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 19:617–619

    PubMed  CAS  Google Scholar 

  6. Grammatopoulos T, Morris K, Ferguson P, Weyhenmeyer J (2002) Angiotensin protects cortical neurons from hypoxic-induced apoptosis via the angiotensin type 2 receptor. Mol Brain Res 99:114–124

    Article  PubMed  CAS  Google Scholar 

  7. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  PubMed  CAS  Google Scholar 

  8. Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA (2009) Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells. Neuroscience 158:1488–1499

    Article  PubMed  CAS  Google Scholar 

  9. Ling EA, Ng YK, Wu CH, Kaur C (2001) Microglia: its development and role as a neuropathology sensor. Prog Brain Res 132:61–79

    Article  PubMed  CAS  Google Scholar 

  10. Wu YP, Tan CK, Ling EA (1998) Expression of c-fos immunoreactivity in brain spinal cord neurons following the occlusion of middle cerebral artery in rats. Exp Brain Res 115:129–136

    Article  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T) Method. Methods 24:402–408

    Article  Google Scholar 

  12. Hermann K, Raizada MK, Sumners C, Phillips MI (1988) Immunocytochemical and biochemical characterization of angiotensin I and II in cultured neuronal and glial cells from rat brain. Neuroendocrinology 47:125–132

    Article  PubMed  CAS  Google Scholar 

  13. Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibres in the rat central nervous system: an immunocytochemical study. Neuroerldocrinology 40:2–24

    Article  CAS  Google Scholar 

  14. Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: new insights into an old system. Regul Pept 99:175–182

    Article  PubMed  CAS  Google Scholar 

  15. Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60:215–221

    Article  PubMed  CAS  Google Scholar 

  16. Soltys Z, Orzylowska-Sliwinska O, Zaremba M, Orlowski D, Piechota M, Fiedorowicz A, Janeczko K, Oderfeld-Nowak B (2005) Quantitative morphological study of microglial cells in the ischemic rat brain using principal component analysis. J Neurosci Methods 146:50–60

    Article  PubMed  CAS  Google Scholar 

  17. Jung KH, Chu K, Lee ST, Kim SJ, Song EC, Kim EH, Park DK, Sinn DI, Kim JM, Kim M, Roh JK (2007) Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther 322:1051–1058

    Article  PubMed  CAS  Google Scholar 

  18. Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT (1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31:2478–2486

    Article  PubMed  CAS  Google Scholar 

  19. Culman J, Baulmann J, Blume A, Unger T (2001) The renin-angiotensin system in the brain: an update. J Renin Angiotensin Aldosterone Syst 2:96–102

    PubMed  CAS  Google Scholar 

  20. Iadecola C, Gorelick PB (2004) Hypertension, angiotensin, and stroke: beyond blood pressure. Stroke 35:348–350

    Article  PubMed  Google Scholar 

  21. Chalupsky K, Cai H (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 102:9056–9061

    Article  PubMed  CAS  Google Scholar 

  22. Ando H, Zhou J, Macova M, Imboden H, Saavedra JM (2004) Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35:1726–1731

    Article  PubMed  CAS  Google Scholar 

  23. Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM (2002) Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke 33:2297–2303

    Article  PubMed  CAS  Google Scholar 

  24. Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T (2005) Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36:2220–2225

    Article  PubMed  CAS  Google Scholar 

  25. Abe K, Yuki S, Kogure K (1988) Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 19:480–485

    Article  PubMed  CAS  Google Scholar 

  26. Uno M, Kitazato KT, Suzue A, Matsuzaki K, Harada M, Itabe H, Nagahiro S (2005) Inhibition of brain damage by edaravone, a free radical scavenger, can be monitored by plasma biomarkers that detect oxidative and astrocyte damage in patients with acute cerebral infarction. Free Radic Biol Med 39:1109–1116

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto T, Yuki S, Watanabe T, Mitsuka M, Saito KI, Kogure K (1997) Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res 762:240–242

    Article  PubMed  CAS  Google Scholar 

  28. Kim YJ, Hwang SY, Oh ES, Oh S, Han IO (2006) IL-1beta, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-kappaB pathways. J Neurosci Res 84:1037–1046

    Article  PubMed  CAS  Google Scholar 

  29. Tse AK, Wan CK, Shen XL, Yang M, Fong WF (2005) Honokiol inhibits TNF-alpha-stimulated NF-kappaB activation and NF-kappaB-regulated gene expression through suppression of IKK activation. Biochem Pharmacol 70:1443–1457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Research Grants of China No. 30900778 (J J Li) and 31260254 (CY Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Juan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CY., Zha, H., Xia, QQ. et al. Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell Biochem 382, 47–58 (2013). https://doi.org/10.1007/s11010-013-1717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1717-4

Keywords

Navigation