Skip to main content
Log in

Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Tropomyosin (Tm) plays a central role in the regulation of muscle contraction and is present in three main isoforms in skeletal and cardiac muscles. In the present work we studied the functional role of α- and βTm on force development by modifying the isoform composition of rabbit psoas skeletal muscle myofibrils and of regulated thin filaments for in vitro motility measurements. Skeletal myofibril regulatory proteins were extracted (78 %) and replaced (98 %) with Tm isoforms as homogenous ααTm or ββTm dimers and the functional effects were measured. Maximal Ca2+ activated force was the same in ααTm versus ββTm myofibrils, but ββTm myofibrils showed a marked slowing of relaxation and an impairment of regulation under resting conditions compared to ααTm and controls. ββTm myofibrils also showed a significantly shorter slack sarcomere length and a marked increase in resting tension. Both these mechanical features were almost completely abolished by 10 mM 2,3-butanedione 2-monoxime, suggesting the presence of a significant degree of Ca2+-independent cross-bridge formation in ββTm myofibrils. Finally, in motility assay experiments in the absence of Ca2+ (pCa 9.0), complete regulation of thin filaments required greater ββTm versus ααTm concentrations, while at full activation (pCa 5.0) no effect was observed on maximal thin filament motility speed. We infer from these observations that high contents of ββTm in skeletal muscle result in partial Ca2+-independent activation of thin filaments at rest, and longer-lasting and less complete tension relaxation following Ca2+ removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amphlett GW, Syska H, Perry SV (1976) The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle. FEBS Lett 63:22–26

    Article  CAS  PubMed  Google Scholar 

  • Belus A, Narolska NA, Piroddi N, Scellini B, Deppermann S, Jaquet K, Foster DB, van Eyk J, van der Velden J, Tesi C, Stienen GJ, Poggesi C (2007) Human C-terminal truncated cardiac troponin I exchanged into rabbit psoas myofibrils is unable to fully inhibit acto-myosin interaction in the absence of Ca2+. Biophys J 92:629a

    Google Scholar 

  • Belus A, Piroddi N, Ferrantini C, Tesi C, Cazorla O, Toniolo L, Drost M, Mearini G, Carrier L, Rossi A, Mugelli A, Cerbai E, van der Velden J, Poggesi C (2010) Effects of chronic atrial fibrillation on active and passive force generation in human atrial myofibrils. Circ Res 107:144–152

    Article  CAS  PubMed  Google Scholar 

  • Boussouf SE, Maytum R, Jaquet K, Geeves MA (2007) Role of tropomyosin isoforms in the calcium sensitivity of striated muscle thin filaments. J Muscle Res Cell Motil 28:49–58

    Article  CAS  PubMed  Google Scholar 

  • Brandt PW, Reuben JP, Grundfest H (1972) Regulation of tension in the skinned crayfish muscle fiber. II. Role of calcium. J Gen Physiol 59:305–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner B (1988) Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85:3265–3269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briggs MM, McGinnis HD, Schachat F (1990) Transitions from fetal to fast troponin T isoforms are coordinated with changes in tropomyosin and alpha-actinin isoforms in developing rabbit skeletal muscle. Dev Biol 140:253–260

    Article  CAS  PubMed  Google Scholar 

  • Bronson DD, Schachat FH (1982) Heterogeneity of contractile proteins. Differences in tropomyosin in fast, mixed and slow skeletal muscles of the rabbit. J Biol Chem 257:3937–3944

    CAS  PubMed  Google Scholar 

  • Cecchi G, Colomo F, Poggesi C, Tesi C (1993) A force transducer and a length-ramp generator for mechanical investigations of frog-heart myocytes. Pflug Arch 423:113–120

    Article  CAS  Google Scholar 

  • Chandy IK, Lo JC, Ludescher RD (1999) Differential mobility of skeletal and cardiac tropomyosin on the surface of F-actin. Biochemistry 38:9286–9294

    Article  CAS  PubMed  Google Scholar 

  • Clemmens EW, Regnier M (2004) Skeletal regulatory proteins enhance thin filament sliding speed and force by skeletal HMM. J Muscle Res Cell Motil 25:515–525

    Article  CAS  PubMed  Google Scholar 

  • Clemmens EW, Entezari M, Martyn DA, Regnier M (2005) Different effects of cardiac versus skeletal muscle regulatory proteins on in vitro measures of actin filament speed and force. J Physiol 566:737–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colomo F, Piroddi N, Poggesi C, te Kronnie G, Tesi C (1997) Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog. J Physiol 500:535–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colomo F, Nencini S, Piroddi N, Poggesi C, Tesi C (1998) Calcium dependence of the apparent rate of force generation in single myofibrils from striated muscle activated by rapid solution changes. Adv Exp Med Biol 453:373–382

    Article  CAS  PubMed  Google Scholar 

  • Cummins P, Perry SV (1973) The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J 133:765–777

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C (2007) Myofilament calcium sensitivity does not affect cross-bridge activation–relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 292:R1129–R1136

    Article  PubMed  Google Scholar 

  • Fujita H, Yasuda K, Niitsu S, Funatsu T, Ishiwata S (1996) Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J 71:2307–2318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita H, Sasaki D, Ishiwata S, Kawai M (2002) Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins. Biophys J 82:915–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M (2004) The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol 556:637–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  CAS  PubMed  Google Scholar 

  • Hvidt S, Lehrer SS (1992) Thermally induced chain exchange of frog alpha beta-tropomyosin. Biophys Chem 45:51–59

    Article  CAS  PubMed  Google Scholar 

  • Jagatheesan G, Rajan S, Schulz EM, Ahmed RP, Petrashevskaya N, Schwartz A, Boivin GP, Arteaga GM, Wang T, Wang YG, Ashraf M, Liggett SB, Lorenz J, Solaro RJ, Wieczorek DF (2009) An internal domain of beta-tropomyosin increases myofilament Ca(2+) sensitivity. Am J Physiol Heart Circ Physiol 297:H181–H190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagatheesan G, Rajan S, Wieczorek DF (2010) Investigations into tropomyosin function using mouse models. J Mol Cell Cardiol 48:893–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janco M, Kalyva A, Scellini B, Piroddi N, Tesi C, Poggesi C, Geeves MA (2012) α-Tropomyosin with a D175N or E180G mutation in only one chain differs from tropomyosin with mutations in both chains. Biochemistry 51:9880–9890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janco M, Suphamungmee W, Li X, Lehman W, Lehrer SS, Geeves MA (2013) Polymorphism in tropomyosin structure and function. J Muscle Res Cell Motil 34:177–187

    Article  CAS  PubMed  Google Scholar 

  • Kopylova GV, Shchepkin DV, Nikitina LV (2013) Study of regulatory effect of tropomyosin on actin–myosin interaction in skeletal muscle by in vitro motility assay. Biochemistry (Mosc) 78:260–266

    Article  CAS  Google Scholar 

  • Kreutziger KL, Piroddi N, Scellini B, Tesi C, Poggesi C, Regnier M (2008) Thin filament Ca2+ binding properties and regulatory unit interactions alter kinetics of tension development and relaxation in rabbit skeletal muscle. J Physiol 586:3683–3700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landis C, Back N, Homsher E, Tobacman LS (1999) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle αα-tropomyosin. J Biol Chem 274:31279–31285

    Article  CAS  PubMed  Google Scholar 

  • Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302:593–606

    Article  CAS  PubMed  Google Scholar 

  • Lehman W, Galińska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388:673–681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehrer SS (1975) Intramolecular crosslinking of tropomyosin via disulfide bond formation: evidence for chain register. Proc Natl Acad Sci USA 72:3377–3381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehrer SS (2011) The 3-state model of muscle regulation revisited: is a fourth state involved? J Muscle Res Cell Motil 32:203–208

    Article  CAS  PubMed  Google Scholar 

  • Lehrer SS, Qian YD, Hvidt S (1989) Assembly of the native heterodimer of Rana esculenta tropomyosin by chain exchange. Science 246:926–928

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Heeley DH, Smillie LB, Kawai M (2010) The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres. J Muscle Res Cell Motil 31:93–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maytum R, Westerdorf B, Jaquet K, Geeves MA (2003) Differential regulation of the actomyosin interaction by skeletal and cardiac troponin isoforms. J Biol Chem 278:6696–6701

    Article  CAS  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKillop DF, Fortune NS, Ranatunga KW, Geeves MA (1994) The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J Muscle Res Cell Motil 15:309–318

    Article  CAS  PubMed  Google Scholar 

  • Monteiro PB, Lataro RC, Ferro JA, Reinach Fde C (1994) Functional alpha-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino-terminal acetyl group. J Biol Chem 269:10461–10466

    CAS  PubMed  Google Scholar 

  • Muthuchamy M, Grupp IL, Grupp G, O’Toole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF (1995) Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem 270:30593–30603

    Article  CAS  PubMed  Google Scholar 

  • Narolska NA, Piroddi N, Belus A, Boontje NM, Scellini B, Deppermann S, Zaremba R, Musters RJ, dos Remedios C, Jaquet K, Foster DB, Murphy AM, van Eyk JE, Tesi C, Poggesi C, van der Velden J, Stienen GJ (2006) Impaired diastolic function after exchange of endogenous troponin I with C-terminal truncated troponin I in human cardiac muscle. Circ Res 99:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Nevzorov IA, Levitsky DI (2011) Tropomyosin: double helix from the protein world. Biochemistry (Mosc) 76:1507–1527

    Article  CAS  Google Scholar 

  • Nilsson J, Tajsharghi H (2008) Beta-tropomyosin mutations alter tropomyosin isoform composition. Eur J Neurol 15:573–578

    Article  CAS  PubMed  Google Scholar 

  • Nixon BR, Liu B, Scellini B, Tesi C, Piroddi N, Ogut O, Solaro RJ, Ziolo MT, Janssen PM, Davis JP, Poggesi C, Biesiadecki BJ (2013) Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 535:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmiter KA, Kitada Y, Muthuchamy M, Wieczorek DF, Solaro RJ (1996) Exchange of beta- for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem 271:11611–11614

    Article  CAS  PubMed  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  CAS  PubMed  Google Scholar 

  • Pieples K, Arteaga G, Solaro RJ, Grupp I, Lorenz JN, Boivin GP, Jagatheesan G, Labitzke E, De Tombe PP, Konhilas JP, Irving TC, Wieczorek DF (2002) Tropomyosin 3 expression leads to hypercontractility and attenuates myofilament length-dependent Ca(2+) activation. Am J Physiol Heart Circ Physiol 283:H1344–H1353

    Article  CAS  PubMed  Google Scholar 

  • Piroddi N, Tesi C, Pellegrino MA, Tobacman LS, Homsher E, Poggesi C (2003) Contractile effects of the exchange of cardiac troponin for fast skeletal troponin in rabbit psoas single myofibrils. J Physiol 552:917–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poggesi C, Tesi C, Stehle R (2005) Sarcomeric determinants of striated muscle relaxation kinetics. Pflug Arch 449:505–517

    Article  CAS  Google Scholar 

  • Regnier M, Morris C, Homsher E (1995) Regulation of the cross-bridge transition from a weakly to strongly bound state in skinned rabbit muscle fibers. Am J Physiol 269:C1532–C1539

    CAS  PubMed  Google Scholar 

  • Salviati G, Betto R, Danieli Betto D (1982) Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres. Biochem J 207:261–272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scellini B, Piroddi N, Poggesi C, Tesi C (2010) Extraction and replacement of the tropomyosin–troponin complex in isolated myofibrils. Adv Exp Med Biol 682:163–174

    Article  CAS  PubMed  Google Scholar 

  • Scellini B, Lundy S, Piroddi N, Flint G, Tu A, Luo Z, Gordon AM, Regnier M, Poggesi C, Tesi C (2011) Role of tropomyosin (Tm) isoforms in skeletal muscle thin filament regulation. J Muscle Res Cell Motil 32:112–113

    Google Scholar 

  • Scellini B, Ferrara C, Piroddi N, Sumida J, Poggesi C, Lehrer SS, Tesi C (2012) Tropomyosin flexibility modulates Ca2+ sensitivity of thin filament and affects tension relaxation in skeletal muscle myofibrils after troponin–tropomyosin removal and reconstitution. J Muscle Res Cell Motil 33:246

    Google Scholar 

  • Schachat FH, Bronson DD, McDonald OB (1985) Heterogeneity of contractile proteins. A continuum of troponin–tropomyosin expression in mammalian skeletal muscle. J Biol Chem 260:1108–1113

    CAS  PubMed  Google Scholar 

  • She M, Trimble D, Yu LC, Chalovich JM (2000) Factors contributing to troponin exchange in myofibrils and in solution. J Muscle Res Cell Motil 21:737–745

    Article  CAS  PubMed  Google Scholar 

  • Siththanandan VB, Tobacman LS, Van Gorder N, Homsher E (2009) Mechanical and kinetic effects of shortened tropomyosin reconstituted into myofibrils. Pflug Arch 458:761–776

    Article  CAS  Google Scholar 

  • Smillie LB (1982) Methods in enzymology 85:234–241. Academic Press, New York

    Google Scholar 

  • Tajsharghi H, Ohlsson M, Palm L, Oldfors A (2012) Myopathies associated with β-tropomyosin mutations. Neuromuscul Disord 22:923–933

    Article  CAS  PubMed  Google Scholar 

  • Tesi C, Colomo F, Nencini S, Piroddi N, Poggesi C (1999) Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle. J Physiol 516:847–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tesi C, Colomo F, Nencini S, Piroddi N, Poggesi C (2000) The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J 78:3081–3092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tesi C, Colomo F, Piroddi N, Poggesi C (2002a) Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles. J Physiol 541:187–199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tesi C, Piroddi N, Colomo F, Poggesi C (2002b) Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle. Biophys J 83:2142–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolska BM, Keller RS, Evans CC, Palmiter KA, Phillips RM, Muthuchamy M, Oehlenschlager J, Wieczorek DF, de Tombe PP, Solaro RJ (1999) Correlation between myofilament response to Ca2+ and altered dynamics of contraction and relaxation in transgenic cardiac cells that express beta-tropomyosin. Circ Res 84:745–751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by 7th Framework Programs of the European Union (STREP Project “BIG-HEART”, Grant Agreement 241577) by Telethon-Italy (GGP07133), by Ministero Italiano dell’Università e Ricerca scientifica MIUR (PRIN 2010R8JK2X_002) and NIH R01 HL11197 (MR). The authors gratefully acknowledge Sig. Alessandro Aiazzi for skillfull technical advice and design and Dr. Michael Geeves and Dr. Sam Lehrer for helpful discussions.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Tesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scellini, B., Piroddi, N., Flint, G.V. et al. Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development. J Muscle Res Cell Motil 36, 11–23 (2015). https://doi.org/10.1007/s10974-014-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-014-9394-9

Keywords

Navigation