Skip to main content
Log in

Antiviral amphiphilic membranes based on the organometallic compound for protein removal from wastewater with fouling-resistant

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Antiviral ultrafiltration membranes (UF) were successfully fabricated using amphiphilic polyvinylchloride-co-acrylic acid) (PVC-AA), which were incorporated with organometallic compound manganese acetylacetonate Mn(acac)3. Non-solvent induced phase separation (NIPS) method was used to prepare the UF membrane based on PVC-AA. Fabricated membranes were characterized by different analytical methods. The fabricated membranes (PVC-AA/ Mn(acac)3) provided the highest removal percentage for proteins when compared to the neat amphiphilic (PVC-AA). The hydrophilicity and antifouling properties of the membranes were improved with increasing load of manganese acetylacetonate Mn(acac)3 in the polymeric solution to 1%. The membrane with 1 wt% Mn(acac)3 (UF3) exhibited the best antifouling properties using bovine serum albumin 1 g.L−1and sodium alginate 2 g.L−1 and a real sample of wastewater namely ~ 99% of flux recovery ratio. PVC-AA- Mn(acac)3 provided antifouling and antiviral properties. The viral test using real sewage wastewater indicated that the membranes UF 2 and UF3 removes all viruses of 100%, which indicated negative detection in the treated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roner MR, Carraher CE, Shahi K, Barot G (2011) Review Antiviral Activity of Metal-Containing Polymers—Organotin and Cisplatin-Like Polymers. Materials 4:991–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao W, Liang H, Ma J, Han M, Chen Z-L, Han Z-S, Li G-B (2011) Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272:1–8

    Article  CAS  Google Scholar 

  3. Lee J, Jeong S, Ye Y, Chen V, Vigneswaran S, Leiknes T, Liu Z (2017) Protein fouling in carbon nanotubes enhanced ultrafiltration membrane fouling mechanism as a function of pH and ionic strength. Sep Purif Technol 176:323–334

    Article  CAS  Google Scholar 

  4. D’souza N, Mawson A (2005) Membrane cleaning in the dairy industry: a review. Crit Rev Food Sci Nutr 45:125–134

    Article  CAS  PubMed  Google Scholar 

  5. Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Proc Eng 1:121–138

    Article  Google Scholar 

  6. Ulbricht M, Matuschewski H, Oechel A, Hicke H-G (1996) Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein adsorbing ultrafiltration membranes. J Membr Sci 115:31–47

    Article  CAS  Google Scholar 

  7. Liu F, Zhu B-K, Xu YY (2006) Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Appl Surf Sci 253:2096–2101

    Article  CAS  Google Scholar 

  8. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  PubMed  Google Scholar 

  9. Speth TF, Gusses AM, Summers RS (2000) Evaluation of nanofiltration pretreatments for flux loss control. Desalination 130:31–44

    Article  CAS  Google Scholar 

  10. Bouwman E, van Gorkum R (2007) A study of new manganese complexes as potential driers for alkyd paints. J Coat Technol Res 4:491–503

    Article  CAS  Google Scholar 

  11. Mahdavian M, Attar MM (2009) Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros Sci 51:409–414

    Article  CAS  Google Scholar 

  12. Abdallah H, Shalaby MS, Shaban AMH (2015) Performance and Characterization for Blend Membrane of PES with Manganese(III) Acetylacetonate as Metalorganic Nanoparticles. Int J Chem Eng 2015:1–9

    Article  Google Scholar 

  13. Shalaby MS, Abdallah H (2013) Preparation of manganese (III) acetylacetonate nanoparticles via an environmentally benign route. Front Chem Sci Eng 7:329–337

    Article  CAS  Google Scholar 

  14. Weng D, Lei C, Wu TT, Sun RM, Shen YLu (2015) Spontaneous and continuous anti-virus disinfection from nonstoichiometric perovskite-type lanthanum manganese oxide. Pro Nat Sci Mater 25:191–196

    Article  CAS  Google Scholar 

  15. Chattopadhyay S (2000) Compatibility studies on solution of polymer blends by viscometric and phase-separation technique J Appl Polym Sci 77(880):889

    Google Scholar 

  16. Asatekin A, Menniti A, Kang S, Elimelech M, Morgenroth E, Mayes AM (2006) Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J Membr Sci 285:81–89

    Article  CAS  Google Scholar 

  17. Fang LF, Wang NC, Zhou MY, Zhu LP, John AE (2015) Poly (N, N-dimethylaminoethyl methacrylate) grafted poly (vinyl chloride) s synthesized via ATRP process and their membranes for dye separation. Chin J Polym Sci 33:1491–1502

    Article  CAS  Google Scholar 

  18. Jiang S, Wang J, Wu J, Chen Y (2015) Poly (vinyl chloride) and poly (ether sulfone)- g-poly (ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance. J. Appl. Polym. Sci. 132:41726–41735

    Article  Google Scholar 

  19. Fang LF, Zhou MY, Wang NC, Zhu B-K, Zhu L-P (2015) Improving the antifouling property of poly(vinyl chloride) membranes by poly(vinyl chloride)-g-poly(methacrylic acid) as the additive. J Appl Polym Sci 132:42745–42755

    Article  Google Scholar 

  20. Fang LF, Zhu BK, Zhu LP, Matsuyama H, Zhao S (2017) Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media. J Membr Sci 524:235–244

    Article  CAS  Google Scholar 

  21. Lee KJ, Park JT, Goh JH, Kim JH (2008) Synthesis of amphiphilic graft copolymer brush and its use as template film for the preparation of silver nanoparticles. J Polym Sci Part A: Polym Chem 46:3911–3918

    Article  CAS  Google Scholar 

  22. Ahn SH, Seo JA, Kim JH, Ko Y, Hong SU (2009) Synthesis and gas permeation properties of amphiphilic graft copolymer membranes. J Membr Sci 345:128–133

    Article  CAS  Google Scholar 

  23. Chi WS, Hong SU, Jung B, Kang SW, Kang YS, Kim JH (2013) Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes. J Membr Sci 443:54–61

    Article  CAS  Google Scholar 

  24. Madigan MT, and Martinko JM (2008) Microorganisms and microbiology, In Brock biology of microorganisms 11th ed. 1–20. Upper Saddle River NJ: Pearson Prentice Hall

  25. Xagoraraki I, Yin Z (2014) Svambayev. Fate of viruses in water systems. J. Environ, Eng, p 140

    Google Scholar 

  26. O’ Brien, E., J. Nakyazze, H. Wu, N. Kiwanuka, W. Cunningham, J. B. Kaneene, and I. Xagoraraki, (2017) Viral diversity and abundance in polluted waters in Kampala. Uganda. Water Res 127:41–49

    Article  Google Scholar 

  27. Liu F, Zhu BK, Xu YY (2007) Preparation and Characterization of Poly(vinyl chloride)graft-Acrylic Acid Membrane by Electron Beam. J Appl Polym Sci 105:291–296

    Article  CAS  Google Scholar 

  28. Katayama H, Shimasaki A, Ohgaki S (2002) Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol 68:1033–1039

    Article  CAS  Google Scholar 

  29. Bae J, Schwab KJ (2008) Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl Environ Microbiol 74:477–484

    Article  CAS  PubMed  Google Scholar 

  30. Abdallah H, Taman R, Elgayar D, Farag H (2018) Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation. Eur Polymer J 108:542–553

    Article  CAS  Google Scholar 

  31. Mansor ES, Ali EA, Shaban AM (2021) Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment. Chem Eng J 407:127175

    Article  CAS  Google Scholar 

  32. Mansor ES, Jamil TS, Abdallah H, Shaban AM (2018) Highly thin film nanocomposite membrane based metal organic complexes for brackish water desalination. J. Environ Chemi Eng 6:5459–5469

    Article  CAS  Google Scholar 

  33. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J Membr Sci 315:36–47

    Article  CAS  Google Scholar 

  34. Fang LF, Yang HY, Cheng L, Kato N, Jeon S, Takagi R, H, (2017) Matsuyama, Effect of molecular weight of sulfonated Poly(ether sulfone) (SPES) on the mechanical strength and antifouling properties of poly(ether sulfone)/SPES blend membranes. Ind Eng Chem Res 56:11302–11311

    Article  CAS  Google Scholar 

  35. Luo L, Chung TS, Weber M, Staudt C, Maletzko C (2017) Molecular interaction between acidic SPPSU and basic HPEI polymers and its effects on membrane formation for ultrafiltration. J Membr Sci 524:33–42

    Article  CAS  Google Scholar 

  36. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(3812):3818

    Google Scholar 

  37. Feng Y, Han G, Chung T-S, Weber M, Widjojo N, Maletzko C (2017) Effects of polyethylene glycol on membrane formation and properties of hydrophilic sulfonated polyphenylenesulfone (SPPSU) membranes. J Membr Sci 531:27–35

    Article  CAS  Google Scholar 

  38. Lai JY, Lin FC, Wu TT, Wang DM (1999) On the formation of macrovoids in PMMA membranes. J Membr Sci 155:31–43

    Article  CAS  Google Scholar 

  39. Lin KY, Wang D-M, Lai JY (2002) Nonsolvent-induced gelation and its effect on membrane morphology. Macromolecules 35:6697–6706

    Article  CAS  Google Scholar 

  40. Abdallah H, Shalaby MS, El-gendi A, Shaban AM, Zhu B-K (2019) Effectiveness of a coagulation step and polyester support on blend polyvinylchloride membrane formation and performance. J Polym Eng 39:351–359

    Article  CAS  Google Scholar 

  41. Mansor ES, Abdallah H, Shaban AM (2020) Fabrication of high selectivity blend membranes based on poly vinyl alcohol for crystal violet dye removal. J Environ Chem Eng 8:103706

    Article  CAS  Google Scholar 

  42. Jamil TS, Mansor ES, Abdallah H, Shaban AM, Souaya ER (2018) Novel anti fouling mixed matrix CeO2/Ce7O12 nanofiltration membranes for heavy metal uptake. J Environ Chem Eng 6:3273–3282

    Article  CAS  Google Scholar 

  43. Wang NC, Fang LF, Wang J, Zhang P, Wang WB, Lin CE, Xiao L, Chen C, Zhao B, Abdallah H, Matsuyama H, Zhu BK (2019) pH-dependent property of carboxyl-based ultrafiltration membranes fabricated from poly(vinyl chloride-r-acrylic acid). J Appl Polym Sci 47068:1–9

    Google Scholar 

  44. Jakubiak S, Tomaszewska J, Jackiewicz A, Michalski J, Kurzydłowski KJ (2016) Polypropylene –zinic oxide nanorode hybrid material for application in separation process. Chem Process Eng 37:393–403

    Article  CAS  Google Scholar 

  45. Ma R, Ji Y-L (2016) Xiao-DanWeng, Quan-FuAn, Cong-Jie Gao, High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization. Desalination 381:100–110

    Article  CAS  Google Scholar 

  46. Chiao YH, Chen ST, Patra T, Hsu CH, Sengupta A, Hung WS, Huang SH, Qian X, Wickramasinghe R, Chang Y, Lee K-R, Lai J-Y (2019) Zwitterionic forward osmosis membrane modified by fast second interfacial polymerization with enhanced antifouling and antimicrobial properties for produced water pretreatment. Desalination 469:114090

    Article  CAS  Google Scholar 

  47. Zuo Y, Li J, Yi J, Wang Z, Chen C (2008) Determination of A-site deficiency in lanthanum manganite by XRD intensity ratio. J Solid State Chem 181:700–704

    Article  CAS  Google Scholar 

  48. Mansor ES, Ali H, Abdel-Karim A (2020) Efficient and reusable polyethylene oxide/polyaniline composite membrane for dye adsorption and filtration. Colloids Interface Sci Commun 39:100314

    Article  CAS  Google Scholar 

  49. Mansor ES,  Jamil TS, Abdallah H, Youssef HF,  Ah M, Shaban Eg, Souaya R  (2019) Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A Membr Water Treat 10 6 451–460

  50. El Hadidy AM, Peldszus S, Van Dyke MI (2013) An evaluation of virus removal mechanisms by ultrafiltration membranes using MS2 and φX174 bacteriophage. Sep Purif Technol 120:215–223

    Article  Google Scholar 

  51. Madaeni SS (1997) mechanism of virus removal using membranes , filtration & separation.

  52. Jamil TS, Mansor ES, Abdallah H, Shaban AM (2018) Innovative high flux/low pressure blend thin film composite membranes for water softening. J React Function Polym 131:384–399

    Article  CAS  Google Scholar 

  53. Gentile GJ, Cecilia Cruz M, Beatriz Rajal V, de Cortalezzi MMF (2018) Electrostatic interactions in virus removal by ultrafiltration membranes. J Environ Chem Eng 6:1314–1321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Science and Technological Development Fund (STDF), Egypt, and the Ministry of Science & Technology of the People’s Republic of China due to their financial support and all facilities they offered to perform this work, through the Project No. (30431), Egypt-China Cooperation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman S. Mansor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M., Mansor, E.S., Abdallah, H. et al. Antiviral amphiphilic membranes based on the organometallic compound for protein removal from wastewater with fouling-resistant. J Polym Res 28, 150 (2021). https://doi.org/10.1007/s10965-021-02505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02505-1

Keywords

Navigation