Skip to main content
Log in

On Efficient Second Order Stabilized Semi-implicit Schemes for the Cahn–Hilliard Phase-Field Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Efficient and energy stable high order time marching schemes are very important but not easy to construct for the study of nonlinear phase dynamics. In this paper, we propose and study two linearly stabilized second order semi-implicit schemes for the Cahn–Hilliard phase-field equation. One uses backward differentiation formula and the other uses Crank–Nicolson method to discretize linear terms. In both schemes, the nonlinear bulk forces are treated explicitly with two second-order stabilization terms. This treatment leads to linear elliptic systems with constant coefficients, for which lots of robust and efficient solvers are available. The discrete energy dissipation properties are proved for both schemes. Rigorous error analysis is carried out to show that, when the time step-size is small enough, second order accuracy in time is obtained with a prefactor controlled by a fixed power of \(1/\varepsilon \), where \(\varepsilon \) is the characteristic interface thickness. Numerical results are presented to verify the accuracy and efficiency of proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. Mater. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)

    Article  MathSciNet  Google Scholar 

  3. Baskaran, A., Zhou, P., Hu, Z., Wang, C., Wise, S., Lowengrub, J.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  Google Scholar 

  4. Benesová, B., Melcher, C., Süli, E.: An implicit midpoint spectral approximation of nonlocal Cahn–Hilliard equations. SIAM J. Numer. Anal. 52(3), 1466–1496 (2014)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Muler, N.E.: An \({L^\infty }\) bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133(2), 129–144 (1995)

    Article  MathSciNet  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  Google Scholar 

  7. Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108(2–3), 147–158 (1998)

    Article  Google Scholar 

  8. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J Sci. Comput. 59(3), 574–601 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, X.: Spectrum for the Allen–Cahn, Cahn–Hillard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19(7), 1371–1395 (1994)

    Article  Google Scholar 

  10. Condette, N., Melcher, C., Süli, E.: Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth. Math. Comput. 80(273), 205–223 (2011)

    Article  MathSciNet  Google Scholar 

  11. Diegel, A.E., Wang, C., Wise, S.M.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J Numer. Anal. 36(4), 1867–1897 (2016)

    Article  MathSciNet  Google Scholar 

  12. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  Google Scholar 

  13. Elliott, C., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J Math. Anal. 27(2), 404–423 (1996)

    Article  MathSciNet  Google Scholar 

  14. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  15. Elliott CM, Larsson S: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630, S33–S36 (1992)

    Article  MathSciNet  Google Scholar 

  16. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), volume 529 of Mater. Res. Soc. Sympos. Proc. pp. 39–46. MRS (1998)

  17. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  Google Scholar 

  18. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)

    Article  MathSciNet  Google Scholar 

  19. Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. Interfaces Free Bound. 7(1), 1–28 (2005)

    Article  MathSciNet  Google Scholar 

  20. Feng, X., Tang, T., Yang, J.: Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3(1), 59–80 (2013)

    Article  MathSciNet  Google Scholar 

  21. Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hlliard equation. Numer. Math. 87(4), 675–699 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gomez, H., Hughes, T.J.R.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230(13), 5310–5327 (2011)

    Article  MathSciNet  Google Scholar 

  23. Guilln-Gonzlez, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  Google Scholar 

  24. Guilln-Gonzlez, F., Tierra, G.: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models. Comput. Math. Appl. 68(8), 821–846 (2014)

    Article  MathSciNet  Google Scholar 

  25. Guo, J., Wang, C., Wise, S.M., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commun. Math. Sci. 14(2), 489–515 (2016)

    Article  MathSciNet  Google Scholar 

  26. Guo, R., Filbet, F., Yan, X.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. J. Sci. Comput. 68(3), 1029–1054 (2016)

    Article  MathSciNet  Google Scholar 

  27. Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows. J. Sci. Comput. 70, 965–989 (2017)

    Article  MathSciNet  Google Scholar 

  28. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57(5–7), 616–628 (2007)

    Article  MathSciNet  Google Scholar 

  29. Ju, L., Zhang, J., Du, Q.: Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations. Comput. Mater. Sci. 108(Part B), 272–282 (2015)

    Article  Google Scholar 

  30. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality. ESAIM. Math. Model. Numer. Anal. 38(01), 129–142 (2004)

    Article  MathSciNet  Google Scholar 

  31. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)

    Article  MathSciNet  Google Scholar 

  32. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54(3), 1653–1681 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3–4), 211–228 (2003)

    Article  MathSciNet  Google Scholar 

  35. Magaletti, F., Picano, F., Chinappi, M., Marino, L., Casciola, C.M.: The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95–126 (2013)

    Article  MathSciNet  Google Scholar 

  36. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2017)

    Article  MathSciNet  Google Scholar 

  37. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. arXiv:1710.01331 (2017)

  38. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. A 28, 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  39. Shen, J., Yang, X., Haijun, Y.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    Article  MathSciNet  Google Scholar 

  40. Shin, J., Lee, H.G., Lee, J.-Y.: Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme. J. Comput. Phys. 347, 367–381 (2017)

    Article  MathSciNet  Google Scholar 

  41. Wang, L., Haijun, Y.: Convergence analysis of an unconditionally energy stable linear Crank–Nicolson scheme for the Cahn–Hilliard equation. J. Math. Study 51(1), 89–114 (2017)

    MathSciNet  Google Scholar 

  42. Wang, L., Yu, H.: Energy stable second order linear schemes for the Allen–Cahn phase-field equation. Commun. Math. Sci. (2018) (in revision)

  43. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng. 30(2), 180–203 (2014)

    Article  MathSciNet  Google Scholar 

  44. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Num. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  45. Xu, X., Di, Y., Yu, H.: Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. J. Fluid Mech. arXiv:1710.09141 (2018) (to appear)

  46. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  47. Yang, X., Lili, J.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MathSciNet  Google Scholar 

  48. Yang, X., Yu, H.: Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. (2018) (to appear)

  49. Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)

    Article  MathSciNet  Google Scholar 

  50. Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)

    Article  MathSciNet  Google Scholar 

  51. Zhu, J., Chen, L.-Q., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 3564–3572 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Jie Shen and Prof. Xiaobing Feng for helpful discussions. This work is partially supported by NNSFC under Grants 11771439, 11371358, 91530322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Yu.

Appendix: Proof of Lemma 1

Appendix: Proof of Lemma 1

Proof

We first write down some inequalities that will be frequently used. The first one is the Holder’s inequality

$$\begin{aligned} \Vert u v w\Vert _{L^s} \le \Vert u\Vert _{L^p} \Vert v\Vert _{L^q} \Vert w\Vert _{L^r}, \quad \forall \ p,q,r\in (0,\infty ],\ \frac{1}{s} = \frac{1}{p} + \frac{1}{q} + \frac{1}{r}. \end{aligned}$$
(A.1)

The second one is the Sobolev inequality

$$\begin{aligned} \Vert u \Vert _{L^q} \le C_s \Vert u \Vert _1, \end{aligned}$$
(A.2)

where \(q \in [2, \infty )\) for \(d=2; q\in [2, \frac{2d}{d-2}]\) for \(d>2; C_s\) is a general constant independent of \(\phi \). We can further use Poincare’s inequality to get

$$\begin{aligned} \Vert v \Vert _{L^q} \le C_s \Vert \nabla v \Vert ,\quad \forall v\in L^2_0({\varOmega }). \end{aligned}$$
(A.3)

For \(v \in L^2_0({\varOmega })\), we also have following inequality

$$\begin{aligned} \Vert v\Vert ^2 = (\nabla v,\nabla (-{\varDelta })^{-1} v) \le \frac{1}{2\delta } \Vert \nabla v\Vert ^2 + \frac{\delta }{2} \Vert v \Vert _{-1}^2, \end{aligned}$$
(A.4)

where \(\delta >0\) is an arbitrary constant.

Now, we begin the proof.

  1. (i)

    When \(\gamma =1\), we have Cahn–Hilliard equation

    $$\begin{aligned} \phi _{t}+ \varepsilon {\varDelta }^2 \phi =\dfrac{1}{\varepsilon } {\varDelta }f(\phi ). \end{aligned}$$
    (A.5)

    Multiplying (A.5) by \(-{\varDelta }^{-1} \phi _t\) and using integration by parts, we get

    $$\begin{aligned} \Vert \phi _t\Vert _{-1}^2 + \frac{\varepsilon }{2}\frac{d}{ d t} \Vert \nabla \phi \Vert ^2 =-\frac{1}{\varepsilon }(f(\phi ),\phi _t) =-\frac{1}{\varepsilon }\frac{d}{d t}\int _{{\varOmega }} F(\phi ) dx. \end{aligned}$$
    (A.6)

    After integrating over [0, T], we obtain

    $$\begin{aligned} \int _{0}^{T}\Vert \phi _t\Vert _{-1}^{2}\mathrm{d}t + E_{\varepsilon }(\phi (T)) = E_{\varepsilon }(\phi ^0) \end{aligned}$$
    (A.7)

    Taking maximum values of terms on the left hand side for \(T \in [0, \infty ]\), we get the first part of (i) from (3.7). From the definition of \(E_\varepsilon (\phi )\), and assumption (3.1) we know

    $$\begin{aligned} \Vert \phi \Vert _{L^2}^2 \le B_0 |{\varOmega }| + B_1 \varepsilon ^{-\sigma _1+1} \lesssim \varepsilon ^{-(\sigma _1-1)^+}. \end{aligned}$$
    (A.8)

    Combining above estimate with the fact \(\frac{\varepsilon }{2}\Vert \nabla \phi \Vert ^2 \lesssim \varepsilon ^{-\sigma _1}\), we get

    $$\begin{aligned} \Vert \phi \Vert _1^2 \lesssim \varepsilon ^{-(\sigma _1+1)}. \end{aligned}$$
    (A.9)
  2. (ii)

    We formally differentiate (A.5) in time to obtain

    $$\begin{aligned} \phi _{tt}+ \varepsilon {\varDelta }^2 \phi _{t} = \dfrac{1}{ \varepsilon }{\varDelta }\left( f'(\phi )\phi _t \right) . \end{aligned}$$
    (A.10)

    Pairing (A.10) with \( -{\varDelta }^{-1}\phi _t\) and using (A.4), yields

    $$\begin{aligned} \begin{aligned} \frac{1}{2}\frac{d}{d t}\Vert \phi _{t}\Vert _{-1}^2 + \varepsilon \Vert \nabla \phi _{t}\Vert ^2 =&-\dfrac{1}{\varepsilon }\left( f'(\phi )\phi _t, \phi _t \right) \le \frac{\tilde{c}_0}{\varepsilon }\Vert \phi _t\Vert ^2\\ \le \,&\frac{\varepsilon }{2} \Vert \nabla \phi _{t}\Vert ^2 + \frac{\tilde{c}_{0}^2}{2 \varepsilon ^3}\Vert \phi _{t}\Vert _{-1}^2.\\ \end{aligned} \end{aligned}$$
    (A.11)

    Integrating (A.11) over [0, T] and taking maximum values for terms depending on T, we get

    $$\begin{aligned} \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \Vert \phi _{t}\Vert _{-1}^2+ \varepsilon \int _{0}^{\infty } \Vert \nabla \phi _{t}\Vert ^2\mathrm{d} t \lesssim \frac{\tilde{c}_{0}^2}{ \varepsilon ^3} \int _{0}^{\infty } \Vert \phi _t\Vert _{-1}^2 \mathrm{d} t +\Vert \phi _{t}^0\Vert _{-1}^2. \end{aligned}$$
    (A.12)

    The assertion then follows from (i) and the inequality (3.8) of Assumption 2.

  3. (iii)

    Testing (A.10) with \(\phi _t\), using (A.1) and (A.2) with Poincare’s inequality, we get

    $$\begin{aligned} \begin{aligned} \frac{1}{2} \frac{d}{d t}\Vert \phi _t\Vert ^2 + \varepsilon \Vert {\varDelta }\phi _t \Vert ^2&= \frac{1}{\varepsilon }(f'(\phi ) \phi _t, {\varDelta }\phi _t) \le \frac{1}{\varepsilon } \Vert f'(\phi )\Vert _{L^3} \Vert \phi _t\Vert _{L^6} \Vert {\varDelta }\phi _t\Vert \\&\le \frac{\varepsilon }{2} \Vert {\varDelta }\phi _t\Vert ^2 +\frac{1}{2 \varepsilon ^3} \Vert f'(\phi )\Vert _{L^3}^2 \Vert \phi _t \Vert _{L^6}^2\\&\le \frac{\varepsilon }{2} \Vert {\varDelta }\phi _t\Vert ^2 +\frac{C_s^2}{2 \varepsilon ^3} \Vert f'(\phi )\Vert _{L^3}^2 \Vert \nabla \phi _t \Vert ^2, \end{aligned} \end{aligned}$$
    (A.13)

    which leads to

    $$\begin{aligned} \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]}\Vert \phi _t\Vert ^2 + \varepsilon \int _{0}^{\infty } \Vert {\varDelta }\phi _t\Vert ^2 \mathrm{d} t \lesssim \frac{C_s}{\varepsilon ^3} \mathop {{{\mathrm{ess~sup}}}}_{t\in [0,\infty ]} \Vert f'(\phi )\Vert _{L^3}^2 \int _{0}^{\infty } \Vert \nabla \phi _t\Vert ^2 \mathrm{d} t +\Vert \phi _t^0\Vert ^2.\nonumber \\ \end{aligned}$$
    (A.14)

    On the other hand side, by assumption (3.3), the Sobolev inequality (A.2) and estimate (A.9), we have

    $$\begin{aligned} \Vert f'(\phi )\Vert _{L^3}^2 \lesssim \tilde{c}_2 \Vert \phi \Vert _{L^{3(p-2)}}^{2(p-2)} +\tilde{c}_3 \lesssim \tilde{c}_2 \Vert \phi \Vert _1^{2(p-2)} + \tilde{c}_3 \lesssim \varepsilon ^{-(\sigma _1+1)(p-2)} \end{aligned}$$
    (A.15)

    The assertion then follows from (A.14), (A.15), (ii) and assumption (3.9).

  4. (iv)

    Testing (A.10) with \(-{\varDelta }^{-1}\phi _{tt}\), we get

    $$\begin{aligned} \Vert \phi _{tt}\Vert _{-1}^2+ \frac{\varepsilon }{2}\frac{d}{dt} \Vert \nabla \phi _{t}\Vert ^2= & {} - \dfrac{1}{\varepsilon }(f'(\phi )\phi _t, \phi _{tt})\nonumber \\= & {} -\frac{1}{2\varepsilon }\frac{d}{dt}(f'(\phi )\phi _t,\phi _t) + \frac{1}{2\varepsilon } (f''(\phi )\phi _t^2,\phi _t) \nonumber \\\le & {} -\frac{1}{2\varepsilon }\frac{d}{dt}(f'(\phi )\phi _t,\phi _t) + \frac{1}{2\varepsilon } \Vert f''\Vert _{L^{6}} \Vert \phi _t^2\Vert _{L^3} \Vert \phi _t\Vert \nonumber \\\le & {} -\frac{1}{2\varepsilon }\frac{d}{dt}(f'(\phi )\phi _t,\phi _t) + \frac{C_s^2}{2\varepsilon } \Vert f''\Vert _{L^{6}} \Vert \nabla \phi _t\Vert ^2 \Vert \phi _t\Vert \nonumber \\ \end{aligned}$$
    (A.16)

    Integrate (A.16) over [0, T], we continue the estimate as

    $$\begin{aligned}&2\int _{0}^{T} \Vert \phi _{tt}\Vert _{-1}^2 \mathrm{d} t + \varepsilon \Vert \nabla \phi _{t}(T)\Vert ^2 - \varepsilon \Vert \nabla \phi _{t}^0\Vert ^2\nonumber \\&\quad \le -\frac{1}{\varepsilon }(f'(\phi )\phi _t,\phi _t)|_{t=T} + \frac{1}{\varepsilon } (f'(\phi ^0)\phi _t^0,\phi _t^0) + \frac{C_s^2}{\varepsilon } \mathop {{{\mathrm{ess~sup}}}}_{t\in [0,T]}\{\Vert f''\Vert _{L^{6}} \Vert \phi _t\Vert \}\int _0^T \Vert \nabla \phi _t\Vert ^2 \mathrm{d}t\nonumber \\&\quad \le \frac{\varepsilon }{2} \Vert \nabla \phi _{t}(T)\Vert ^2 + \frac{\tilde{c}_{0}^2}{2 \varepsilon ^3}\Vert \phi _{t}(T)\Vert _{-1}^2 + \frac{1}{\varepsilon } (f'(\phi ^0)\phi _t^0,\phi _t^0)\nonumber \\&\qquad +\, \frac{C_s^2}{\varepsilon } \mathop {{{\mathrm{ess~sup}}}}_{t\in [0,T]}\{\Vert f''\Vert _{L^{6}} \Vert \phi _t\Vert \}\int _0^T \Vert \nabla \phi _t\Vert ^2\mathrm{d}t, \end{aligned}$$
    (A.17)

    i.e.

    $$\begin{aligned}&2\int _{0}^{T} \Vert \phi _{tt}\Vert _{-1}^2 \mathrm{d} t + \frac{\varepsilon }{2}\Vert \nabla \phi _{t}(T)\Vert ^2 \le \varepsilon \Vert \nabla \phi _{t}^0\Vert ^2 + \frac{1}{\varepsilon } (f'(\phi ^0)\phi _t^0,\phi _t^0)\nonumber \\&\quad +\, \frac{\tilde{c}_{0}^2}{2 \varepsilon ^3}\Vert \phi _{t}(T)\Vert _{-1}^2 + \frac{C_s^2}{\varepsilon } \mathop {{{\mathrm{ess~sup}}}}_{t\in [0,T]} \{\Vert f''\Vert _{L^{6}} \Vert \phi _t\Vert \}\int _0^T \Vert \nabla \phi _t\Vert ^2\mathrm{d}t. \end{aligned}$$
    (A.18)

    On the other hand, by (3.4), the Sobolev inequality (A.2) and estimate (A.9), we have

    $$\begin{aligned} \Vert f''\Vert _{L^{6}} \lesssim \tilde{c}_4\Vert \phi \Vert _{L^{6(p-3)^+}}^{(p-3)^+} + \tilde{c}_5 \lesssim \Vert \phi \Vert _1^{(p-3)^+} \lesssim \varepsilon ^{-\frac{1}{2}(\sigma _1+1)(p-3)^+} \end{aligned}$$
    (A.19)

    By taking maximum for terms depending on T in (A.18) and using (A.19), (ii), (iii) and the inequality (3.10) of Assumption 2. we obtain the assertion (iv).

  5. (v)

    We formally differentiate (A.10) in time to derive

    $$\begin{aligned} \phi _{ttt}+ \varepsilon {\varDelta }^2 \phi _{tt} =\dfrac{1}{\varepsilon }{\varDelta }\left( f''(\phi )(\phi _t)^2+f'(\phi )\phi _{tt} \right) . \end{aligned}$$
    (A.20)

    Testing (A.20) with \({\varDelta }^{-2} \phi _{tt}\), we obtian

    $$\begin{aligned}&\frac{1}{2} \frac{d}{ dt } \Vert {\varDelta }^{-1}\phi _{tt}\Vert ^2 + \varepsilon \Vert \phi _{tt} \Vert ^2 =\dfrac{1}{\varepsilon } \left( f''(\phi )(\phi _t)^2+f'(\phi )\phi _{tt}, {\varDelta }^{-1}\phi _{tt}\right) \nonumber \\&\quad \le \dfrac{\varepsilon }{2} \Vert f''(\phi )\Vert ^2_{L^2} \Vert \phi _t\Vert _{L^6}^{4} + \dfrac{1}{2\varepsilon ^3} \Vert {\varDelta }^{-1} \phi _{tt}\Vert ^2_{L^6} +\frac{1}{2\varepsilon ^3}\Vert f'(\phi )\Vert _{L^{3}}^2\Vert {\varDelta }^{-1} \phi _{tt}\Vert _{L^6}^2 +\frac{\varepsilon }{2} \Vert \phi _{tt}\Vert ^2 \nonumber \\&\quad \le \dfrac{\varepsilon }{2} C_s^4\Vert f''(\phi )\Vert ^2_{L^2} \Vert \nabla \phi _t\Vert ^{4} + \dfrac{C_s^2}{2\varepsilon ^3}\Vert \phi _{tt}\Vert ^2_{-1} +\frac{C_s^2}{2\varepsilon ^3} \Vert f'(\phi )\Vert _{L^{3}}^2 \Vert \phi _{tt}\Vert _{-1}^2 +\frac{\varepsilon }{2} \Vert \phi _{tt}\Vert ^2.\nonumber \\ \end{aligned}$$
    (A.21)

    After taking integration from [0, T] and taking maximum for terms depending on T, we have

    $$\begin{aligned}&\mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \Vert {\varDelta }^{-1}\phi _{tt}\Vert ^2 + \varepsilon \int _{0}^{\infty } \Vert \phi _{tt} \Vert ^2 \mathrm{d} t\nonumber \\&\quad \lesssim {} {\varepsilon } \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \left( \Vert f''(\phi )\Vert ^2_{L^2} \Vert \nabla \phi _t\Vert ^{2}\right) \int _{0}^{\infty } \Vert \nabla \phi _t\Vert ^{2}\mathrm{d} t \nonumber \\&\qquad +\, \frac{1}{\varepsilon ^3} \left( \mathop {{{\mathrm{ess~sup}}}}_{t\in [0,\infty ]} \Vert f'(\phi )\Vert _{L^{3}}^2+1\right) \int _{0}^{\infty } \Vert \phi _{tt}\Vert ^2_{-1}\mathrm{d} t + \Vert {\varDelta }^{-1}\phi _{tt}^0\Vert ^2. \end{aligned}$$
    (A.22)

    The assertion then follows from (A.15), the following estimate

    $$\begin{aligned} \Vert f''\Vert _{L^{2}}^2 \lesssim \tilde{c}_4\Vert \phi \Vert _{L^{2(p-3)^+}}^{(p-3)^+} + \tilde{c}_5 \lesssim \Vert \phi \Vert _1^{2(p-3)^+} \lesssim \varepsilon ^{-(\sigma _1+1)(p-3)^+}, \end{aligned}$$
    (A.23)

    (ii), (iv) and the inequality (3.11) of Assumption 2.

  6. (vi)

    Pairing (A.20) with \(-{\varDelta }^{-3} \phi _{ttt}\), we obtain

    $$\begin{aligned}&\Vert {\varDelta }^{-1}\phi _{ttt}\Vert _{-1}^2 + \frac{\varepsilon }{2}\frac{d}{d t}\Vert \phi _{tt}\Vert _{-1}^2\nonumber \\&\quad =-\dfrac{1}{\varepsilon }\left( f''(\phi )(\phi _t)^2+f'(\phi )\phi _{tt}, {\varDelta }^{-2} \phi _{ttt} \right) \nonumber \\&\quad \le \dfrac{C_s^2}{\varepsilon ^2} \left( \Vert f''(\phi )\Vert _{L^2}^2 \Vert \phi _{t}\Vert _{L^6}^4 + \Vert f'(\phi )\Vert _{L^3}^2 \Vert \phi _{tt}\Vert ^2 \right) +\frac{1}{2C_s^2}\Vert {\varDelta }^{-2}\phi _{ttt}\Vert _{L^6}^2\nonumber \\&\quad \le \dfrac{C_s^2}{\varepsilon ^2} \left( C_s^4 \Vert f''(\phi )\Vert _{L^2}^2 \Vert \nabla \phi _{t}\Vert ^4 +\Vert f'(\phi )\Vert _{L^3}^2 \Vert \phi _{tt}\Vert ^2 \right) +\frac{1}{2}\Vert {\varDelta }^{-1}\phi _{ttt}\Vert _{-1}^2.\nonumber \\ \end{aligned}$$
    (A.24)

    Integrating (A.24) from \([0,\infty )\), we have

    $$\begin{aligned}&\int _{0}^{\infty } \Vert {\varDelta }^{-1}\phi _{ttt}\Vert _{-1}^2 \mathrm{d} t + \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \varepsilon \Vert \phi _{tt}\Vert _{-1}^2\nonumber \\&\quad \le \dfrac{2}{\varepsilon ^2} C_s^6 \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \left( \Vert f''(\phi )\Vert ^2_{L^2}\Vert \nabla \phi _t\Vert ^{2} \right) \int _{0}^{\infty } \Vert \nabla \phi _t\Vert ^{2} \mathrm{d} t\nonumber \\&\qquad +\, \dfrac{2C_s^2}{\varepsilon ^2} \mathop {{{\mathrm{ess~sup}}}}\limits _{t\in [0,\infty ]} \Vert f'(\phi )\Vert _{L^3}^2 \int _{0}^{\infty } \Vert \phi _{tt}\Vert ^2 \mathrm{d} t +\varepsilon \Vert \phi _{tt}^0\Vert _{-1}^2. \end{aligned}$$
    (A.25)

    The assertion then follows from (A.23), (A.15), (ii), (iv), (v) and the inequality (3.12) of Assumption 2.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, H. On Efficient Second Order Stabilized Semi-implicit Schemes for the Cahn–Hilliard Phase-Field Equation. J Sci Comput 77, 1185–1209 (2018). https://doi.org/10.1007/s10915-018-0746-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0746-2

Keywords

Mathematics Subject Classification

Navigation