Skip to main content
Log in

Efficient fully-decoupled and fully-discrete explicit-IEQ numerical algorithm for the two-phase incompressible flow-coupled Cahn-Hilliard phase-field model

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an efficient fully-decoupled and fully-discrete numerical scheme with second-order temporal accuracy is developed to solve the incompressible hydrodynamically coupled Cahn-Hilliard model for simulating the two-phase fluid flow system. The scheme is developed by combining the finite element method for spatial discretization and several effective time marching approaches, including the pressure-correction projection method for dealing with fluid equations and the explicit-invariant energy quadratization (explicit-IEQ) approach for dealing with coupled nonlinear terms. The obtained scheme is very efficient since it only needs to solve several decoupled, linear elliptic equations with constant coefficients at each time step. We also strictly prove the solvability and unconditional energy stability of the scheme, and verify the accuracy and stability of the scheme through plenty of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci, 2012, 22: 1150013

    Article  MathSciNet  MATH  Google Scholar 

  2. Aland S. Time integration for diffuse interface models for two-phase flow. J Comput Phys, 2014, 262: 58–71

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson D M, McFadden G B, Wheeler A A. Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech, 1998, 30: 139–165

    Article  MathSciNet  MATH  Google Scholar 

  4. Brereton G, Korotney D. Coaxial and oblique coalescence of two rising bubbles. In: The ASME Applied Mechanics Conference. New York: ASME, 1991: 1–16

    Google Scholar 

  5. Cai Y Y, Shen J. Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows. Math Comp, 2017, 87: 2057–2090

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen W B, Feng W Q, Liu Y, et al. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equations. Discrete Contin Dyn Syst Ser B, 2019, 24: 149–182

    MathSciNet  MATH  Google Scholar 

  7. Chen W B, Liu Y, Wang C, et al. Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation. Math Comp, 2016, 85: 2231–2257

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng K L, Wang C, Wise S M. An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun Comput Phys, 2019, 26: 1335–1364

    Article  MathSciNet  MATH  Google Scholar 

  9. Christlieb A, Jones J, Promislow K, et al. High accuracy solutions to energy gradient flows from material science models. J Comput Phys, 2014, 257: 192–215

    Article  MathSciNet  MATH  Google Scholar 

  10. Cristini V, Renardy Y. Scalings for droplet sizes in shear-driven breakup: Non-microfluidic ways to monodisperse emulsions. Fluid Dyn Mater Process, 2006, 2: 77–94

    MathSciNet  MATH  Google Scholar 

  11. Diegel A E, Wang C, Wang X M, et al. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer Math, 2017, 137: 495–534

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding H, Spelt P D M, Shu C. Diffuse interface model for incompressible two-phase flows with large density ratios. J Comput Phys, 2007, 226: 2078–2095

    Article  MATH  Google Scholar 

  13. Du Q, Nicolaides R A. Numerical analysis of a continuum model of phase transition. SIAM J Numer Anal, 1991, 28: 1310–1322

    Article  MathSciNet  MATH  Google Scholar 

  14. E W N, Liu J-G. Projection method I: Convergence and numerical boundary layers. SIAM J Numer Anal, 1995, 32: 1017–1057

    Article  MathSciNet  MATH  Google Scholar 

  15. Eyre D J. Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution. Materials Research Society Symposium Proceedings, vol. 529. Warrendale: Materials Research Society, 1998, 39–46

    Google Scholar 

  16. Feng X B. Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J Numer Anal, 2006, 44: 1049–1072

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng X B, Prohl A. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer Math, 2003, 94: 33–65

    Article  MathSciNet  MATH  Google Scholar 

  18. Forster S, Khandpur A K, Zhao J, et al. Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules, 1994, 27: 6922–6935

    Article  Google Scholar 

  19. Girault V, Raviart P-A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1987

    MATH  Google Scholar 

  20. Gomez H, Calo V M, Bazilevs Y, et al. Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput Methods Appl Mech Engrg, 2008, 197: 4333–4352

    Article  MathSciNet  MATH  Google Scholar 

  21. Gomez H, van der Zee K G. Computational Phase-Field Modeling, 2nd ed. Chichester: Wiley, 2017

    Google Scholar 

  22. Gong Y Z, Zhao J, Wang Q. Second order fully discrete energy stable methods on staggered grids for hydrodynamic phase field models of binary viscous fluids. SIAM J Sci Comput, 2018, 40: B528–B553

    Article  MathSciNet  MATH  Google Scholar 

  23. Grün G. On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J Numer Anal, 2013, 51: 3036–3061

    Article  MathSciNet  MATH  Google Scholar 

  24. Guillén-González F, Tierra G. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J Comput Phys, 2018, 354: 67–85

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo Z, Lin P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. J Fluid Mech, 2015, 766: 226–271

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo Z, Lin P, Lowengrub J S. A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law. J Comput Phys, 2014, 276: 486–507

    Article  MathSciNet  MATH  Google Scholar 

  27. Han D Z, Wang X M. A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J Comput Phys, 2015, 290: 139–156

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu Z, Wise S M, Wang C, et al. Stable and efficient finite difference nonlinear-multigrid schemes for the phase field crystal equation. J Comput Phys, 2009, 228: 5323–5339

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys, 1999, 155: 96–127

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim J. Phase-field models for multi-component fluid flows. Commun Comput Phys, 2012, 12: 613–661

    Article  MathSciNet  MATH  Google Scholar 

  31. Lev B I, Nazarenko V G, Nych A B, et al. Deformation and instability of nematic drops in an external electric field. JETP Lett, 2000, 71: 262–265

    Article  Google Scholar 

  32. Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci, 2009, 64: 3389–3406

    Article  Google Scholar 

  33. Lin P, Liu C, Zhang H. An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal flow dynamics. J Comput Phys, 2007, 227: 1411–1427

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu C, Shen J. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys D, 2003, 179: 211–228

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu C, Walkington N J. An Eulerian description of fluids containing visco-hyperelastic particles. Arch Ration Mech Anal, 2001, 159: 229–252

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu Y, Chen W B, Wang C, et al. Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer Math, 2017, 135: 679–709

    Article  MathSciNet  MATH  Google Scholar 

  37. Lowengrub J, Truskinovsky L. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc Roy Soc A Math Phys Eng Sci, 1998, 454: 2617–2654

    Article  MathSciNet  MATH  Google Scholar 

  38. Minjeaud S. An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer Methods Partial Differential Equations, 2013, 29: 584–618

    Article  MathSciNet  MATH  Google Scholar 

  39. Nochetto R H, Salgado A J, Tomas I. A diffuse interface model for two-phase ferrofluid flows. Comput Methods Appl Mech Engrg, 2016, 309: 497–531

    Article  MathSciNet  MATH  Google Scholar 

  40. Nochetto R H, Salgado A J, Walker S W. A diffuse interface model for electrowetting with moving contact lines. Math Models Methods Appl Sci, 2014, 24: 67–111

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan Q, Chen C, Zhang Y J, et al. A novel hybrid IGA-EIEQ numerical method for the Allen-Cahn/Cahn-Hilliard equations on complex curved surfaces. Comput Methods Appl Mech Engrg, 2023, 404: 115767

    Article  MathSciNet  MATH  Google Scholar 

  42. Romero I. Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Internat J Numer Methods Engrg, 2009, 79: 706–732

    Article  MathSciNet  MATH  Google Scholar 

  43. Salgado A J. A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM Math Model Numer Anal, 2013, 47: 743–769

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen J. On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes. Math Comp, 1996, 65: 1039–1065

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM J Numer Anal, 2012, 50: 105–125

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys, 2018, 353: 407–416

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474–506

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen J, Yang X F. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28: 1669–1691

    Article  MathSciNet  MATH  Google Scholar 

  49. Shen J, Yang X F. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J Numer Anal, 2015, 53: 279–296

    Article  MathSciNet  MATH  Google Scholar 

  50. Shen J, Yang X F. The IEQ and SAV approaches and their extensions for a class of highly nonlinear gradient flow systems. Contemp Math, 2020, 754: 217–245

    Article  MathSciNet  MATH  Google Scholar 

  51. Stone H A, Leal L G. The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J Fluid Mech, 1989, 2: 223–263

    Article  Google Scholar 

  52. Styles V, Kay D, Welford R. Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound, 2008, 10: 15–43

    MathSciNet  Google Scholar 

  53. Wang M, Huang Q M, Wang C. A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation. J Sci Comput, 2021, 88: 33

    Article  MathSciNet  MATH  Google Scholar 

  54. Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal, 2009, 47: 2269–2288

    Article  MathSciNet  MATH  Google Scholar 

  55. Wodo O, Ganapathysubramanian B. Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3d isoperimetric problem. J Comput Phys, 2011, 230: 6037–6060

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang X F. Linear, first and second-order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J Comput Phys, 2016, 327: 294–316

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang X F. A novel fully-decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier-Stokes equations coupled with mass-conserved Allen-Cahn phase-field model of two-phase incompressible flow. Internat J Numer Methods Engrg, 2021, 122: 1283–1306

    MathSciNet  Google Scholar 

  58. Yuan C H, Zhang H. Self-consistent mean field model of hydrogel and its numerical simulation. J Theoret Comput Chem, 2013, 12: 1350048

    Article  Google Scholar 

  59. Yue P T, Feng J J, Liu C, et al. A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech, 2004, 515: 293–317

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chuanjun Chen was supported by National Natural Science Foundation of China (Grant No. 12271468) and Shandong Province Natural Science Foundation (Grant Nos. ZR2021ZD03 and ZR2021MA010). Xiaofeng Yang was supported by National Science Foundation of USA (Grant No. DMS-2012490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, X. Efficient fully-decoupled and fully-discrete explicit-IEQ numerical algorithm for the two-phase incompressible flow-coupled Cahn-Hilliard phase-field model. Sci. China Math. (2023). https://doi.org/10.1007/s11425-022-2096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11425-022-2096-x

Keywords

MSC(2020)

Navigation