Skip to main content
Log in

Highly efficient and unconditionally energy stable semi-discrete time-marching numerical scheme for the two-phase incompressible flow phase-field system with variable-density and viscosity

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For the variable-density/viscosity Cahn-Hilliard phase-field model of the binary-phase incompressible fluid flow system, the development of easy-to-implement numerical schemes has long been known as a challenging problem. We develop a novel fully-decoupled numerical technique in this article which can achieve unconditional energy stability while explicitly discretizing nonlinear coupling items. The idea is invented on the basis of combining the Strang operator splitting method and the novel decoupling method by using the zero-energy-contribution property. The scheme only needs to solve a series of completely independent linear elliptic equations at each time step, in which the Cahn-Hilliard equation and the pressure Poisson equation are the constant coefficient. To demonstrate the effectiveness of the scheme, we provide the rigorous proof of the energy stability/solvability, and also perform ample accuracy and stability tests and 2D/3D numerical simulations, including the Rayleigh-Taylor instability and bubble rising dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels H. Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm Math Phys, 2009, 289: 45–73

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels H, Garcke H, Grün G. Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math Models Methods Appl Sci, 2012, 22: 1150013

    Article  MathSciNet  MATH  Google Scholar 

  3. Alizadeh M, Seyyedi S M, Taeibi Rahni M, et al. Three-dimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice Boltzmann method. J Mol Liquids, 2017, 236: 151–161

    Article  Google Scholar 

  4. Bhaga D, Weber M E. Bubbles in viscous liquids: Shapes, wakes and velocities. J Fluid Mech, 1981, 105: 61–85

    Article  Google Scholar 

  5. Boyer F, Minjeaud S. Numerical schemes for a three component Cahn-Hilliard model. ESAIM Math Model Numer Anal, 2011, 45: 697–738

    Article  MathSciNet  MATH  Google Scholar 

  6. Brereton G, Korotney D. Coaxial and Oblique Coalescence of Two Rising Bubbles. Dynamics of Bubbles and Vortices Near a Free Surface. New York: ASME, 1991

    Google Scholar 

  7. Cai Y, Choi H, Shen J. Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows. Numer Math, 2017, 137: 417–449

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen C, Yang X. Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J Comput Phys, 2019, 388: 41–62

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen C, Yang X. Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard model. Comput Methods Appl Mech Engrg, 2019, 351: 35–59

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding H, Spelt P D M, Shu C. Diffuse interface model for incompressible two-phase flows with large density ratios. J Comput Phys, 2007, 226: 2078–2095

    Article  MATH  Google Scholar 

  11. Dong S, Shen J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios. J Comput Phys, 2012, 231: 5788–5804

    Article  MathSciNet  MATH  Google Scholar 

  12. Du Q, Ju L, Li X, et al. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev, 2021, 63: 317–359

    Article  MathSciNet  MATH  Google Scholar 

  13. Du Q, Nicolaides R A. Numerical analysis of a continuum model of phase transition. SIAM J Numer Anal, 1991, 28: 1310–1322

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao M, Wang X-P. An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J Comput Phys, 2014, 272: 704–718

    Article  MathSciNet  MATH  Google Scholar 

  15. Gomez H, van der Zee K G. Computational Phase-Field Modeling, 2nd ed. Encyclopedia of Computational Mechanics. Hoboken: John Wiley & Sons, 2017

    Google Scholar 

  16. Gong Y, Zhao J, Wang Q. Second order fully discrete energy stable methods on staggered grids for hydrodynamic phase field models of binary viscous fluids. SIAM J Sci Comput, 2018, 40: B528–B553

    Article  MathSciNet  MATH  Google Scholar 

  17. Gong Y, Zhao J, Yang X G, et al. Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J Sci Comput, 2018, 40: B138–B167

    Article  MathSciNet  MATH  Google Scholar 

  18. Guermond J-L, Minev P. High-order time stepping for the incompressible Navier-Stokes equations. SIAM J Sci Comput, 2015, 37: A2656–A2681

    Article  MathSciNet  MATH  Google Scholar 

  19. Guermond J-L, Minev P, Shen J. An overview of projection methods for incompressible flows. Comput Methods Appl Mech Engrg, 2006, 195: 6011–6045

    Article  MathSciNet  MATH  Google Scholar 

  20. Guermond J-L, Quartapelle L. A projection FEM for variable density incompressible flows. J Comput Phys, 2000, 165: 167–188

    Article  MathSciNet  MATH  Google Scholar 

  21. Guermond J-L, Salgado A. A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J Comput Phys, 2009, 228: 2834–2846

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond J-L, Salgado A J. Error analysis of a fractional time-stepping technique for incompressible flows with variable density. SIAM J Numer Anal, 2011, 49: 917–944

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo Z, Lin P, Lowengrub J S. A numerical method for the quasi-incompressible Cahn-Hilliard-Navier-Stokes equations for variable density flows with a discrete energy law. J Comput Phys, 2014, 276: 486–507

    Article  MathSciNet  MATH  Google Scholar 

  24. Han D, Wang X. A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J Comput Phys, 2015, 290: 139–156

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu Z, Wise S M, Wang C, et al. Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J Comput Phys, 2009, 228: 5323–5339

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys, 1999, 155: 96–127

    Article  MathSciNet  MATH  Google Scholar 

  27. Li D, Qiao Z, Tang T. Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J Numer Anal, 2016, 54: 1653–1681

    Article  MathSciNet  MATH  Google Scholar 

  28. Li M, Cheng Y, Shen J, et al. A bound-preserving high order scheme for variable density incompressible Navier-Stokes equations. J Comput Phys, 2021, 425: 109906

    Article  MathSciNet  MATH  Google Scholar 

  29. Li X, Ju L, Meng X. Convergence analysis of exponential time differencing schemes for the Cahn-Hilliard equation. Commun Comput Phys, 2019, 26: 1510–1529

    Article  MathSciNet  MATH  Google Scholar 

  30. Li X, Shen J, Rui H. Energy stability and convergence of SAV block-centered finite difference method for gradient flows. Math Comp, 2019, 88: 2047–2068

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin P, Liu C, Zhang H. An energy law preserving C° finite element scheme for simulating the kinematic effects in liquid crystal flow dynamics. J Comput Phys, 2007, 227: 1411–1427

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu C, Shen J, Yang X. Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J Sci Comput, 2015, 62: 601–622

    Article  MathSciNet  MATH  Google Scholar 

  33. Nochetto R, Pyo J-H. The gauge-Uzawa finite element method. Part I: The Navier-Stokes equations. SIAM J Numer Anal, 2005, 43: 1043–1068

    Article  MathSciNet  MATH  Google Scholar 

  34. Pyo J-H, Shen J. Gauge-Uzawa methods for incompressible flows with variable density. J Comput Phys, 2007, 221: 181–197

    Article  MathSciNet  MATH  Google Scholar 

  35. Romero I. Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Internat J Numer Methods Engrg, 2009, 79: 706–732

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen J. On error estimates of the penalty method for the unsteady Navier-Stokes equations. SIAM J Numer Anal, 1995, 32: 386–403

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen J, Xue J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev, 2019, 61: 474–506

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28: 1669–1691

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen J, Yang X. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J Sci Comput, 2010, 32: 1159–1179

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen J, Yang X. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J Numer Anal, 2015, 53: 279–296

    Article  MathSciNet  MATH  Google Scholar 

  41. Tryggvason G. Numerical simulations of the Rayleigh-Taylor instability. J Comput Phys, 1988, 75: 253–282

    Article  MATH  Google Scholar 

  42. Wise S M, Wang C, Lowengrub J S. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal, 2009, 47: 2269–2288

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang X. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J Comput Phys, 2016, 327: 294–316

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang X. A novel fully-decoupled, second-order and energy stable numerical scheme of the conserved Allen-Cahn type flow-coupled binary surfactant model. Comput Methods Appl Mech Engrg, 2021, 373: 113502

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang X. A novel decoupled second-order time marching scheme for the two-phase incompressible Navier-Stokes/Darcy coupled nonlocal Allen-Cahn model. Comput Methods Appl Mech Engrg, 2021, 377: 113597

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang X, Yu H. Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J Sci Comput, 2018, 40: B889–B914

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang X, Zhang G-D. Convergence analysis for the invariant energy quadratization (IEQ) schemes for solving the Cahn-Hilliard and Allen-Cahn equations with general nonlinear potential. J Sci Comput, 2020, 82: 55

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang X, Zhao J, Wang Q, et al. Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. Math Models Methods Appl Sci, 2017, 27: 1993–2030

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang Z, Dong S. An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J Comput Phys, 2018, 393: 229–257

    Article  MathSciNet  MATH  Google Scholar 

  50. Yu H, Yang X. Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J Comput Phys, 2017, 334: 665–686

    Article  MathSciNet  MATH  Google Scholar 

  51. Yue P, Feng J, Liu C, et al. A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech, 2004, 515: 293–317

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang G-D, He X, Yang X. Decoupled, linear, and unconditionally energy stable fully discrete finite element numerical scheme for a two-phase ferrohydrodynamics model. SIAM J Sci Comput, 2021, 43: B167–B193

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by National Natural Science Foundation of China (Grant No. 11771375). The second author was supported by National Science Foundation of USA (Grant No. DMS-2012490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Yang, X. Highly efficient and unconditionally energy stable semi-discrete time-marching numerical scheme for the two-phase incompressible flow phase-field system with variable-density and viscosity. Sci. China Math. 65, 2631–2656 (2022). https://doi.org/10.1007/s11425-021-1932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-1932-x

Keywords

MSC(2020)

Navigation