Skip to main content
Log in

Antimicrobial Property of Nanosilver Colloid Prepared by Electrical Spark Discharge Method on Aspergillus niger

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study employed an electrical spark discharge method (ESDM) to prepare a nano-Ag colloid as an antifungal solution. The solution was diluted to two concentrations, and the fungal medium prepared in this study was coated with Aspergillus niger. The nano-Ag colloid solution was mixed with A. niger in various concentrations and dripped onto 3M Petrifilm plates. Inhibited growth observed after several days confirmed the antifungal effect of the nano-Ag colloid on A. niger. Because direct washing produced inaccurate quantitation and yielded A. niger in an excessively high concentration, this study employed an inoculation loop method for A. niger quantitation. The concentrations of A. niger ranged from 10−2 to 10−7%. The optimal colony count was observed on day 2. During an experiment regarding the antifungal effect of the ESDM-prepared nano-Ag colloid on A. niger, 3M Petrifilm plates were employed to observe the growth of A. niger. The colony count of 10−2% A. niger without nano-Ag colloid was approximately 60. After the nano-Ag colloid was added, the colony count substantially decreased to approximately 10. The colony count of 10−7% A. niger was reduced to 11 or lower after the nano-Ag colloid was added. The results confirmed the antifungal effect of the nano-Ag colloid on the growth of A. niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.-H. Cho, J.-E. Park, T. Osaka, and S.-G. Park (2005). ElectrochimicaActa 51, 956.

    Article  CAS  Google Scholar 

  2. G. A. Sotiriou and S. E. Pratsinis (2010). Environ. Sci. Technol. 44, 5649.

    Article  CAS  Google Scholar 

  3. M. Rai, A. Yadav, and A. Gade (2009). Biotechnol. Adv. 27, 76.

    Article  CAS  Google Scholar 

  4. P. D. Bragg and D. J. Rainnie (1974). Can. J. Microbiol. 20, 883.

    Article  CAS  Google Scholar 

  5. J. Rungby (1986). Exp. Eye Res. 42, 93.

    Article  CAS  Google Scholar 

  6. K. Babu, M. Deepa, S. G. Shankar, and S. Rai (2008). Internet J. Nanotech. 2, 2–5.

    Google Scholar 

  7. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1. https://doi.org/10.1007/s10876-017-1165-5.

    Article  CAS  Google Scholar 

  8. G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3.

    Article  CAS  Google Scholar 

  9. K.-H. Tseng, C.-Y. Liao, D.-C. Tien, and T.-T. Tsung (2009). Dissociation of colloidal silver into ionic form through membrane under electric field, S. Soomro (ed.), Engineering the Computer Science and IT, InTech.

  10. M. Gostimirovic, P. Kovac, M. Sekulic, and B. Skoric (2012). J. Mech. Sci. Technol. 26, 173.

    Article  Google Scholar 

  11. Ernesto Reverchon, I. De Marco, and E. Torino (2007). J. Supercrit. Fluids 43, (1), 126–138.

    Article  CAS  Google Scholar 

  12. K.-H. Tseng, C.-Y. Liao, and D.-C. Tien (2010). J. Alloys Compd. 493, 438.

    Article  CAS  Google Scholar 

  13. K.-H. Tseng, C.-Y. Chang, M.-Y. Chung, and Y.-L. Tang (2016). Int. J. Polym. Sci. 2016, 1.

    Article  Google Scholar 

  14. J. A. Scholl, A. García-Etxarri, A. L. Koh, and J. A. Dionne (2013). Nano Lett. 13, 564.

    Article  CAS  Google Scholar 

  15. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos (2005). Nat. Biotechnol. 23, 741.

    Article  Google Scholar 

  16. X.-F. Peng, X.-L. Yu, L.-F. Xia, and X. Zhong (2007). J. Zhejiang Univ. (Eng. Sci.) 41, 577.

    CAS  Google Scholar 

  17. K.-H. Tseng, Y.-S. Kao, and C.-Y. Chang (2016). J. Clust. Sci. 27, 1.

    Article  Google Scholar 

  18. E. Schuster, N. Dunn-Coleman, J. C. Frisvad, and P. Van Dijck (2002). Appl. Microbiol. Biotechnol. 59, 426.

    Article  CAS  Google Scholar 

  19. D. Wen and Y. Ding (2004). Int. J. Heat Mass Transf. 47, 5181.

    Article  CAS  Google Scholar 

  20. H. Schraft and L. A. Watterworth (2005). J. Microbiol. Methods 60, 335.

    Article  CAS  Google Scholar 

  21. A. Hörman and M.-L. Hänninen (2006). Water Res. 40, 3249.

    Article  Google Scholar 

  22. J. L. McCarron, G. P. Keefe, S. L. B. McKenna, I. R. Dohoo, and D. E. Poole (2009). J. Dairy Sci. 92, 2297.

    Article  CAS  Google Scholar 

  23. P. Ellis and R. Meldrum (2002). J. Food Prot. 65, 423.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (NSC 103-2221-E-027-070) for financially supporting this research. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Hsiung Tseng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, KH., Chung, MY. & Chiu, JL. Antimicrobial Property of Nanosilver Colloid Prepared by Electrical Spark Discharge Method on Aspergillus niger . J Clust Sci 29, 215–224 (2018). https://doi.org/10.1007/s10876-017-1325-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1325-7

Keywords

Navigation