Skip to main content
Log in

Development and Implementation of a Micro-electric Discharge Machine: Real-Time Monitoring System of Fabrication of Nanosilver Colloid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This Study synthesized the nanosilver colloid (NSC) via arc discharge. The electric force ionizes the deionized water (DW) inter electrode gap, and the plenty of electrons and ions are attracted by opposite electricity. The electrons and ions strike surface of the electrodes, and sputter the nanosilver particles (NSP). The NSP stably suspend in the DW without surface-active agent. It is a novel and rapid preparation in the standard temperature and pressure. Although the industrial electric discharge machine (EDM) could synthesize NSC, it’s too costly and big size. The self-designing micro-EDM that can real-time monitor the processing is substitute the industrial-EDM. By the spectrophotometry, the zetasizer and the scanning electron microscope validate the properties of the NSC that synthesized by the micro-EDM. The results show that the NSC is the same as the features of nanomaterials. The energy of the discharge can be controlled, that can determine the process time. The concentration of the NSP can effectively reduce the difference between the products of the NSC. As the arcing rate (AR) and the absorption peaks are highly correlated, the concentration of the NSP can be predicted during processing. It’s a speedy and preliminary determine of the concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jonathan A. Scholl, Aitzol García-Etxarri, Ai Leen Koh, and Jennifer A. Dionne (2013). Nano Lett. 13, 564.

    Article  CAS  Google Scholar 

  2. Kuo-Hsiung Tseng, Chih-Yu Liao, Jen-Chuen Huang, Der-Chi Tien, and Tsing-Tshih Tsung (2008). Mater. Lett. 62, 3341.

    Article  CAS  Google Scholar 

  3. D. C. Tien, C. Y. Liao, J. C. Huang, K. H. Tseng, J. K. Lung, and T. T. Tsung (2008). Rev. Adv. Mater. Sci. 18, 750.

    Google Scholar 

  4. Chih-Yu Liao, Kuo-Hsiung Tseng, and Hong-Shiou Lin (2013). Metallu. Mater. Trans. B 44, 91.

    Article  Google Scholar 

  5. Kuo-Hsiung Tseng, Juei-Long Chiu, Heng-Lin Lee, Chih-Yu Liao, Hong-Shiou Lin, and Yi-Syuan Kao (2015). Adv. Mater. Sci. Eng. 2015, 1.

    Article  Google Scholar 

  6. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, and G. Henshaw (2011). Nanotechlogy 22, 33.

    Google Scholar 

  7. R. K. Sahu, S. H. Somashekhar, and P. V. Manivannan (2013). Proc. Eng. 64, 946.

    Article  CAS  Google Scholar 

  8. Enbo Yang and Masaaki Nagatsu (2014). Jpn. J. Appl. Phys. 53, 1.

    CAS  Google Scholar 

  9. Marin Gostimirovic, Pavel Kovac, Milenko Sekulic, and Branko Skoric (2012). J. Mech. Sci. Technol. 26, 173.

    Article  Google Scholar 

  10. Tushara Prakash, Grant V. M. Williams, John Kennedy, Peter P. Murmu, Jérôme Leveneur, Shen V. Chong, and Sergey Rubanovd (2014). J. Alloy. Compd. 608, 153.

    Article  CAS  Google Scholar 

  11. A. Cuche, B. Stein, A. Canaguier-Durand, E. Devaux, C. Genet, and T. W. Ebbesen (2012). Nano Lett. 12, 4329.

    Article  CAS  Google Scholar 

  12. Ian C. Bourg and Garrison Sposito (2011). J. Colloid Interface Sci. 360, 701.

    Article  CAS  Google Scholar 

  13. Jun Liu, Yangyang Gao, Dapeng Cao, Liqun Zhang, and Zhanhu Guo (2011). Langmuir 27, 7926.

    Article  CAS  Google Scholar 

  14. Jie Lana, Yong Yang, and Xiaochun Li (2004). Mater. Sci. Eng. A 386, 284.

    Article  Google Scholar 

  15. Kadir Aslana, Joseph R. Lakowiczb, and Chris D. Geddesa (2004). Anal. Biochem. 330, 145.

    Article  Google Scholar 

  16. Yu A Akimov, W. S. Koh, and K. Ostrikov (2009). Opt. Express 17, 10195.

    Article  CAS  Google Scholar 

  17. F. Fang, J. Kennedy, E. Manikandan, J. Futter, and A. Markwitz (2012). Chem. Phys. Lett. 521, 86.

    Article  CAS  Google Scholar 

  18. Majid Darroudi, Mansor Bin Ahmad, Reza Zamiri, A. K. Zak, Abdul Halim Abdullah, and Nor Azowa Ibrahim (2011). Int. J. Nanomed. 6, 677.

    Article  CAS  Google Scholar 

  19. Kuo-Hsiung Tseng, Juei-Long Chiu, Heng-Lin Lee, Yi-Syuan Kao, and Der-Chi Tien (2016). Mater. Manuf. Process. 31, 186.

    Article  CAS  Google Scholar 

  20. Jiunn-Woei Liaw, Shiao-Wen Tsaib, Hung-Hsun Lina, Tzu-Chen Yend, and Bae-Renn Cheng (2012). J. Quant. Spectrosc. Radiat. Transf. 113, 2234.

    Article  CAS  Google Scholar 

  21. Zhaowei Liua, Guogang Renb, Tao Zhangc, and Zhuo Yang (2009). Toxicology 264, 179.

    Article  Google Scholar 

  22. M. M. Mukaka (2012). Malawi Med. J. 24, 69.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Science and Technology (MOST 103-2221-E-027-070-) for financial supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo Hsiung Tseng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, K.H., Kao, YS. & Chang, CY. Development and Implementation of a Micro-electric Discharge Machine: Real-Time Monitoring System of Fabrication of Nanosilver Colloid. J Clust Sci 27, 763–773 (2016). https://doi.org/10.1007/s10876-016-0985-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0985-z

Keywords

Navigation