Skip to main content
Log in

Green Synthesis, Characterization, and Antifungal Activity of Synthesized Silver Nanoparticles (AgNPS) from Garcinia Kola Pulp Extract

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The prevention or cure of microbial infections are mostly combated with the use of antibiotics. However, the activity of most of the available antibiotics had been nullified by fungi resistance. This study was aimed at the investigation of the antifungal property of silver nanoparticles (AgNPs) synthesized from Garcinia kola pulp. The pulp of Garcinia kola were obtained from its ripe fruit, dried and pulverized into fine particles and extracted with water. The extract was mixed with 1mM aqueous silver nitrate following necessary procedure to form AgNPs. The AgNPs synthesized were characterized and screened against tested fungi using standard method. The inhibition zones were measured and recorded after incubation of the plates at a temperature of 35 °C for 24 h. The morphological assessment of the synthesized AgNPs confirmed the variation in particle size ranging from 24 to 10 nm with an average size distribution of 17 nm and a spherical shape. The synthesized AgNPs show good activity against tested fungi strains with inhibition zones ranging from 6 to 17 mm which is comparable to the inhibition zones demonstrated by the control in the range of 18 to 24 mm. This study indorsed the use of AgNPs against fungi infections owning to the antifungal activity displayed against tested fungi strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71–79.

    Article  Google Scholar 

  2. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Natural Products Reports, 27, 238–254.

    Article  Google Scholar 

  3. Pisteli, L., & Giorgi, I. (2012). Antimicrobial action of flavonoids. In A. K. Patra (Ed.), Dietary phytochemicals and microbes (pp. 33–61). Springer.

    Chapter  Google Scholar 

  4. Oyebamiji, A. K., Akintelu, S. A., Folorunso, A. S., Abiola, B. E., Ajayi, S. O., Abdusalam, I. O., & Morakinyo, A. E. (2019). Computational and experimental studies on antimicrobial activity of the bark of Annona Muricata against some selected human pathogenic bacteria and fungi. International Journal of Modern Chemistry, 11(1), 9–27.

    Article  Google Scholar 

  5. Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. (2020). Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(e04508), 1–12. https://doi.org/10.1016/j.heliyon.2020.e04508

    Article  Google Scholar 

  6. Akintelu, S. A., & Folorunso, A. S. (2020). A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience. https://doi.org/10.1007/s12668-020-00774-6

    Article  Google Scholar 

  7. Akintelu, S. A., Olugbeko, S. C., & Folorunso, A. S. (2020). A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. Int Nano Lett. https://doi.org/10.1007/s40089-020-00317-7

    Article  Google Scholar 

  8. Akintelu, S. A., Yao, B., & Folorunso, A. S. (2020). A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. Journal of Chemistry. https://doi.org/10.1155/2020/3189043

    Article  Google Scholar 

  9. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  Google Scholar 

  10. Selvi, K. V., & Sivakumar, T. (2012). Isolation and characterization of silver nanoparticles from Fusarium oxysporum. International Journal of Current Microbiology and Applied Science, 1(1), 56–62.

    Google Scholar 

  11. Akintelu, S. A., Olugbeko, S. C., Folorunso, F. A., Oyebamiji, A. K., & Folorunso, A. S. (2020). Characterization and pharmacological efficacy of silver nanoparticles biosynthesized using the bark extract of Garcinia kola. Journal of Chemistry. https://doi.org/10.1155/2020/2876019

    Article  Google Scholar 

  12. Adegboye, M. F., Akinpelu, D. A., & Okoh, A. I. (2008). The bioactive and phytochemical properties of Garcinia kola (Heckel) seed extracts on some pathogens. African Journal of Biotechnology, 7(21), 3934–3938.

    Google Scholar 

  13. Folorunso, F. A., Folorunso, A. S., & Akintelu, S. A. (2020). Investigation of the effectiveness of biosynthesised gold nanoparticle from Garcinia kola leaves against fungal infections. International Journal of Nanoparticles, 12(4), 316–326.

    Article  Google Scholar 

  14. Akintelu, A. S., Yao, B., & Folorunso, A. S. (2020). Green synthesis, characterization, and antibacterial investigation of synthesized gold nanoparticles (AuNPs) from Garcinia kola pulp extract. Plasmonics. https://doi.org/10.1007/s11468-020-01274-9

    Article  Google Scholar 

  15. Mukhatr, M. D., & Shuaibu, W. A. (1999). Screening of antimicrobial activity of some extracts of Garcinia kola. African Journal of Material and Natural Sciences, 1(1), 117–121.

    Google Scholar 

  16. Adesuyi, A. O., Elumm, I. K., Adaramola, F. B., & Nwokeocha, A. G. M. (2012). Nutritional and phytochemical screening of Garcinia kola. Advanced Journal of Food Science and Technology, 4(1), 9–14.

    Google Scholar 

  17. Nzelibe, H. C., & Okafogu, C. U. (2001). Optimization of ethanol production from Garcinia kola (Bitter kola) pulp agrowaste. African Journal of Biotechnology, 61(7), 2033–2037.

    Google Scholar 

  18. Amaechi, N. C., Okorie, O., & Ajaere, U. B. (2017). Garcinia kola fruit pulp: Evaluation of its nutrient, phytochemical and physicochemical properties. Journal of Applied Life Sciences International, 13(2), 1–10.

    Google Scholar 

  19. Sithara, R., Selvakumar, P., Arun, C., Anandan, S., & Sivashanmugam, P. (2017). Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn (II) ions. Journal of Advanced Research, 8(6), 561–568. https://doi.org/10.1016/j.jare.2017.07.001

    Article  Google Scholar 

  20. Seifipour, R., Nozari, M., & Pishkar, L. (2020). Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. Journal of Inorganic and Organometallic Polymers and Materials. https://doi.org/10.1007/s10904-020-01441-9

    Article  Google Scholar 

  21. Azarbani, F., & Shiravand, S. (2020). Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chemistry Letters and Reviews, 13(1), 41–49.

    Article  Google Scholar 

  22. Dehghanizade, S., Arasteh, J., & Mirzaie, A. (2018). Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artificial Cells Nanomedicine Biotechnology, 46(1), 160–168. https://doi.org/10.1080/21691401.2017.1304402

    Article  Google Scholar 

  23. Al-Shmgani, H. S., Mohammed, W. H., Sulaiman, G. M., & Saadoon, A. H. (2016). Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artificial Cells Nanomedicine Biotechnology, 45(6), 1234–1240. https://doi.org/10.1080/21691401.2016.1220950

    Article  Google Scholar 

  24. Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Applied Nanoscience, 5(8), 945–951. https://doi.org/10.1007/s13204-014-0393-3

    Article  Google Scholar 

  25. Moteriya, P., & Chanda, S. (2017). Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artificial Cells Nanomedicine Biotechnology, 45(8), 1556–1567. https://doi.org/10.1080/21691401.2016.1261871

    Article  Google Scholar 

  26. Tamilarasi, P., & Meena, P. (2020). Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2020.04.025

    Article  Google Scholar 

  27. Parmar, A., Kaur, G., Kapil, S., Sharma, V., Choudhary, M. K., & Sharma, S. (2019). Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: a cleaner approach towards environmental remediation and combating bacterial invasion. Materials Chemistry and Physics, 238, 121861. https://doi.org/10.1016/j.matchemphys.2019.121861

    Article  Google Scholar 

  28. Carmona, E. R., Benito, N., Plaza, T., & Recio-Sánchez, G. (2017). Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chemistry Letters and Reviews, 10(4), 250–256. https://doi.org/10.1080/17518253.2017.1360400

    Article  Google Scholar 

  29. Balavijayalakshmi, J., & Ramalakshmi, V. (2017). Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research Technology, 15(5), 413–422. https://doi.org/10.1016/j.jart.2017.03.010

    Article  Google Scholar 

  30. Sana, S. S., & Dogiparthi, L. K. (2018). Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters, 226, 47–51. https://doi.org/10.1016/j.matlet.2018.05.009

    Article  Google Scholar 

  31. Sharma, K., Guleria, S., & Razdan, V. K. (2019). Green synthesis of silver nanoparticles using Ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. Journal of Plant Biochemistry and Biotechnology. https://doi.org/10.1007/s13562-019-00522-2

    Article  Google Scholar 

  32. Moldovan, B., Sincari, V., Perde-Schrepler, M., & David, L. (2018). Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials, 8(8), 627. https://doi.org/10.3390/nano8080627

    Article  Google Scholar 

  33. Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Science, 8(3), 265–275. https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  34. Said, M. I., & Othman, A. A. (2019). Fast green synthesis of silver nanoparticles using grape leaves extract. Materials Research Express, 6(5), 055029. https://doi.org/10.1088/2053-1591/ab0481

    Article  Google Scholar 

  35. Arya, G., Kumari, R. M., Gupta, N., Kumar, A., Chandra, R., & Nimesh, S. (2018). Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artificial Cells Nanomedicine Biotechnology, 46(5), 985–993. https://doi.org/10.1080/21691401.2017.1354302

    Article  Google Scholar 

  36. Arun, P., Shanmugaraju, V., Renga, J. R., Senthil, S. P., & Kumaran, E. (2013). Biosynthesis of Silver Nanoparticles from Corynebacterium sp. and its antimicrobial activity. International Journal Current Microbiology and Applied Sciences, 2(3), 57–64.

    Google Scholar 

  37. Nishanthi, R., Malathi, S., John Paul, S., & Palani, P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering C, 96, 693–707.

    Article  Google Scholar 

  38. El-Saadony, M. T., El-Wafai, N. A., El-Fattah, H. I. A., & Mahgoub, S. A. (2019). Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic fungi. Advances in Animal Veterinary Science, 7(4), 238–249.

    Article  Google Scholar 

  39. Akintelu, S. A., & Folorunso, A. S. (2019). Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts. J Nanotechnol Nanomed Nanobiotechnol, 6, 022.

    Google Scholar 

  40. Anandalakshmi, K., & Venugobal, J. (2017). Green synthesis and characterization of silver nanoparticles using Vitex negundo (Karu Nochchi) leaf extract and its antibacterial activity. Medicinal Chemistry (Los Angeles), 7, 218–225.

    Google Scholar 

  41. Ayad, Z. M., Ibrahim, O. M. S., & Omar, L. W. (2019). Biosynthesis and characterization of silver nanoparticles by silybum marianum (silymarin) fruit extract. Advances in Animal Veterinary Science, 7(2), 122–130.

    Article  Google Scholar 

  42. Dinesh, D., Murugan, K., Madhiyazhagan, P., et al. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research, 114(4), 1519–1529.

    Article  Google Scholar 

  43. Akintelu, S. A., Folorunso, A. S., & Ademosun, O. T. (2019). Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia kola leaf. Journal of Drug Delivery and Therapeutics, 9(6-s), 58–64.

    Article  Google Scholar 

  44. Jerushka, S. M., Suresh, B., Naidu, K., Karen, P., & Sershen, Patrick G. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial Potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 1–9.

    Google Scholar 

  45. Akhil, R., Jyoti, R., & Mira, D. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10(5), 1–10.

    Google Scholar 

  46. Folorunso, A., Akintelu, S., Oyebamiji, A. K., Ajayi, S., Abiola, B., Abdusalam, I., & Morakinyo, A. (2019). Biosynthesis, characterization and antimicrobial Activity of gold nanoparticles from leaf extracts of Annona muricata. Journal of Nanostructure in Chemistry, 9(2), 111–117.

    Article  Google Scholar 

  47. Akintelu, S. A., Abiola, B. E., Ajayi, S. O., & Olabemiwo, O. M. (2018). Quantification and preliminary estimation of toxic effects of polycyclic aromatic hydrocarbon in some antimalarial herbal drugs in Southwest Nigeria. Bulletin of Pharmaceutical Research, 8(1), 152. https://doi.org/10.21276/bpr.2018.8.1.1

    Article  Google Scholar 

  48. Akintelu, S. A., & Folorunso, A. S. (2019). Biosynthesis, characterization and antifungal investigation of Ag-Cu nanoparticles from bark extracts of Garcina kola. Stem Cell, 10(4), 30–37.

    Google Scholar 

  49. Folorunso, A. S., Oyebamiji, A. K., Erazua, E. A., & Akintelu, S. A. (2019). The exploration of antifungal activity of Garcinia kola seed as novel antifungal agent. International Journal of Traditional and Natural Medicines, 9(1), 41–49.

    Google Scholar 

  50. Akintelu, S. A., Abiola, B. E., Ajayi, S. O., & Olabemiwo, O. M. (2019). Preliminary study of the effects of some herbal drugs on the heamatological and biochemical parameter of Winster albino rats. International Journal of Sciences, 8(10), 26–31. https://doi.org/10.18483/ijSci.2032

    Article  Google Scholar 

  51. Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(3), 1–10.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the staff of the school of department of pure and applied Chemistry Department for their support.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday Adewale Akintelu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

The research does not involve humans and animals, it only involved the use of microorganisms.

Informed Consent

This study was approved and ethical clearance was given by the Research Ethics Committee (ERC) of Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology.

Funding Statement

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significant Statement

This study present a comprehensive report on the antifungal investigation of AgNPs synthesized from Garcinia kola pulp extract which revealed its potential antifungal activity profile against selected clinical isolate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintelu, S.A., Olugbeko, S.C. & Folorunso, A.S. Green Synthesis, Characterization, and Antifungal Activity of Synthesized Silver Nanoparticles (AgNPS) from Garcinia Kola Pulp Extract. BioNanoSci. 12, 105–115 (2022). https://doi.org/10.1007/s12668-021-00925-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00925-3

Keywords

Navigation