Skip to main content
Log in

Facile synthesis of GO/ZnO–Ag nanocomposite and evaluation of rhodamine B dye under sun light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) composite photocatalysts are prepared by a combined impregnation chemical reduction method. GO composite used as a photo catalyst for the removal of organic pollutants and water purification system, it is due to the high surface area to volume ratio of redox potential of GO. The synthesised GO was nanocomposite with ZnO and Ag NPs by sol–gel method and developed as nanocatalysts. Band gap of GO nanocomposite was characterized by UV–visible diffuse reflectance spectroscopy (DRS). Fourier transforms infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDAX) and transmission electron microscope (TEM). The XRD analysis also confirms the presence of Ag NPs of GO/ZnO–Ag nanocomposite. The GO/ZnO–Ag nanocomposite was used in the photocatalytic degradation of rhodamine B (RhB) dye under direct sunlight measured by UV–visible spectroscopy. The Ag NPs uniformly surface covers the surface of GO/ZnO nanocomposite result demonstrates the exceedingly improved the photocatalytic action. The superior photocatalytic activity of RhB dye degradation efficiency of 94 % was achieved. The presence of Ag NPs–GO/ZnO nanocomposite shows increasing photocatalytic activity due to its surface plasma resonance behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Zhang, M.Q. Yang, S. Liu, Y. Sun, Y.J. Xu, Chem. Rev. 115, 10307–10377 (2015)

    Article  Google Scholar 

  2. Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782–796 (2012)

    Article  Google Scholar 

  3. F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16, 488–515 (2015)

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    Article  Google Scholar 

  5. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  6. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7, 1876–1902 (2011)

    Article  Google Scholar 

  7. Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, X. Sun, RSC Adv. 2, 538–545 (2012)

    Article  Google Scholar 

  8. M.Q. Yang, Y.J. Xu, J. Phys. Chem. C 117, 21724–21734 (2013)

    Article  Google Scholar 

  9. W. Shao, X. Liu, H. Min, G. Dong, Q. Feng, S. Zuo, ACS Appl. Mater. Interfaces 7, 6966–6973 (2015)

    Article  Google Scholar 

  10. X.Y. Yang, X. Dou, A. Rouhanipour, L.J. Zhi, H.J. Rader, K. Mullen, J. Am. Chem. Soc. 130, 4216–4217 (2008)

    Article  Google Scholar 

  11. A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 110, 22328–22338 (2006)

    Article  Google Scholar 

  12. Q. Xiang, J. Yu, J. Phys. Chem. Lett. 4, 753–759 (2013)

    Article  Google Scholar 

  13. Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355–7363 (2011)

    Article  Google Scholar 

  14. W.J. Ong, S.Y. Voon, L.L. Tan, B.T. Goh, S.T. Yong, S.P. Chai, Ind. Eng. Chem. Res. 53, 17333–17344 (2014)

    Article  Google Scholar 

  15. R. Bera, S. Kundu, A. Patra, ACS Appl. Mater. Interfaces 7, 13251–13259 (2015)

    Article  Google Scholar 

  16. X. Wang, X. Wan, X. Xu, X. Chen, Appl. Surf. Sci. 321, 10–18 (2014)

    Article  Google Scholar 

  17. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, M. Wu, ACS Sustain. Chem. Eng. 3, 2405–2413 (2015)

    Article  Google Scholar 

  18. D.H. Yoo, T.V. Cuong, V.H. Luan, N.T. Khoa, E.J. Kim, S.H. Hur, S.H. Hahn, J. Phys. Chem. C 116, 7180–7184 (2012)

    Article  Google Scholar 

  19. T. Bharathidasan, A. Mandalam, M. Balasubramanian, P. Dhandapani, S. Sathiyanarayanan, S. Mayavan, ACS Appl. Mater. Interfaces 7, 18450–18459 (2015)

    Article  Google Scholar 

  20. N.P. Herring, S.H. Almahoudi, C.R. Olson, M.S. El-Shall, J. Nanopart. Res. 14, 1277–1289 (2012)

    Article  Google Scholar 

  21. Y. Liao, C. Xie, Y. Liu, H. Chen, H. Li, J. Wu, Ceram. Int. 1, 4437–4444 (2012)

    Article  Google Scholar 

  22. M.Q. Yang, N.Y. Zhang, M. Pagliaro, Y.J. Xu, Chem. Soc. Rev. 43, 8240–8254 (2014)

    Article  Google Scholar 

  23. N. Zhang, Y. Zhang, Y.J. Xu, Nanoscale 4, 5792–5813 (2012)

    Article  Google Scholar 

  24. C. Justin Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.K. Son, H.J. Kim Banyan, J. Phys. Chem. C 117, 2600–2607 (2013)

    Article  Google Scholar 

  25. K. Vignesh, S. Kang, B.S. Kwak, M. Kang, Sep. Purif. Technol. 147, 257–265 (2015)

    Article  Google Scholar 

  26. Z. Chen, N. Zhang, Y.J. Xu, CrystEngComm 15, 3022–3030 (2013)

    Article  Google Scholar 

  27. T.N. Reddy, J. Manna, R.K. Rana, ACS Appl. Mater. Interfaces 7, 19684–19690 (2015)

    Article  Google Scholar 

  28. N.T. Khoa, S.W. Kim, D.H. Yoo, S. Cho, E.J. Kim, S.H. Hahn, ACS Appl. Mater. Interfaces 7, 3524–3531 (2015)

    Article  Google Scholar 

  29. J. Xu, H. Sang, X. Wang, K. Wanga, Dalton Trans. 44, 9528–9537 (2015)

    Article  Google Scholar 

  30. N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, D. Wang, ACS Nano 7, 1504–1512 (2013)

    Article  Google Scholar 

  31. S. Wi, H. Woo, S. Lee, J. Kang, J. Kim, S. An, C. Kim, S. Nam, C. Kim, B. Park, Nanoscale Res. Lett. 10, 204 (2015)

    Article  Google Scholar 

  32. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanang, A. Stephen, RSC Adv. 5, 34645–34651 (2015)

    Article  Google Scholar 

  33. S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S. Jae Kim, G. Venugopal, J. Phys. Chem. C 119, 22057–22065 (2015)

    Article  Google Scholar 

  34. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, C. Sun, Chem. Eng. J. 183, 238–243 (2012)

    Article  Google Scholar 

  35. W.N. Wang, J. Park, P. Biswas, Catal. Sci. Technol. 1, 593–600 (2011)

    Google Scholar 

  36. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, J. Phys. Chem. C 117, 27023–27030 (2013)

    Article  Google Scholar 

  37. C. Han, M.Q. Yang, B. Weng, Y.J. Xu, Phys. Chem. Chem. Phys. 16, 16891–16903 (2014)

    Article  Google Scholar 

  38. O. Akhavan, ACS Nano 4, 4174–4180 (2010)

    Article  Google Scholar 

  39. G.R. Xu, J.N. Wang, C.J. Li, Appl. Surf. Sci. 279, 103–108 (2013)

    Article  Google Scholar 

  40. A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei, F. Gharibi, Environ. Sci. Pollut. Res. 22, 16875–16880 (2015)

    Article  Google Scholar 

  41. S. Safa, R. Sarraf-Mamssoory, R. Azimirad, J. Sol Gel Sci. Technol. 74, 499–506 (2015)

    Article  Google Scholar 

  42. Y. Zhang, S. Zhang, M. Zheng, H. Pang, Int. J. Electrochem. Sci. 10, 8706–8713 (2015)

    Google Scholar 

  43. J.P. Dhal, B.G. Mishra, G. Hota, RSC Adv. 5, 58072–58083 (2015)

    Article  Google Scholar 

  44. H.Y. He, J. Fei, J. Lu, Micro Nano Lett. 10, 389–394 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

C. Pragathiswaran gratitude to the Staff Members, Department of Chemistry, Periyar E.V.R. College (Autonomous), Triuchirappalli-23. The author, P. Govindhan thanks the Branch Manager, Syndicate Bank, Matalampatti, Dharmapuri, sanctioning for education loan to conduct for their support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pragathiswaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindhan, P., Pragathiswaran, C. & Chinnadurai, M. Facile synthesis of GO/ZnO–Ag nanocomposite and evaluation of rhodamine B dye under sun light. J Mater Sci: Mater Electron 28, 354–362 (2017). https://doi.org/10.1007/s10854-016-5530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5530-1

Keywords

Navigation