Skip to main content

Advertisement

Log in

Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work reports a simple one-step synthesis of ZnO nanopyramids supported on reduced graphene oxide (RGO) nanosheets using microwave irradiation (MWI) of zinc acetate and GO in the presence of a mixture of oleic acid and oleylamine. The rapid decomposition of zinc acetate by MWI in the presence of the mixture of oleic acid and oleylamine results in the formation of hexagonal ZnO nanopyramids. GO has a high affinity for absorbing MWI, which results in a high local heating effect around the GO nanosheets and facilitates the reduction of GO by the oleylamine. The RGO nanosheets act as heterogeneous surface sites for the nucleation and growth of the ZnO nanopyramids. Using ligand exchange, the ZnO–RGO nanocomposites can be dispersed in an aqueous medium, thus allowing their use as photocatalysts for the degradation of the malachite green dye in water. The ZnO–RGO nanocomposites show enhanced photocatalytic activity for the degradation of the dye over the unsupported ZnO nanopyramids. The enhanced activity is attributed to efficient charge transfer of the photogenerated electrons in the conduction band of ZnO to graphene. This enhances the oxidative pathway of the holes generated in the valence band of ZnO which can effectively lead to the degradation and mineralization of the malachite green. The ZnO nanopyramids supported on RGO could have improved performance in other photocatalytic reactions and also in solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  • Abdelsayed V, Panda AB, Glaspell GP, El-Shall MS (2008) Nanoparticles: synthesis, stabilization, passivation, and functionalization. In: Nagarajan R and Hatton TA (eds) ACS Symposium Series 996, Chap. 17, 225–247

  • Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834

    Article  CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  • Banhart F, Kotakoski J, Krashennnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41

    Article  CAS  Google Scholar 

  • Bilecka I, Elser P, Niederberger M (2009) Kinetic and thermodynamic aspects in the microwave-assisted synthesis of zno nanoparticles in benzyl alcohol. ACS Nano 3:467–477. doi:10.1021/nn800842b

    Article  CAS  Google Scholar 

  • Cancado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    Article  CAS  Google Scholar 

  • Chang JF, Kuo HH, Leu IC, Hon MH (2002) The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens Actuators B Chem 84:258–264

    Article  Google Scholar 

  • Chen YL, Hu ZA, Chang YQ, Wang HW, Zhang ZY, Yang YY et al (2011) Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C 115:2563–2571. doi:10.1021/jp109597n

    Article  CAS  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G, Pan ZW, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871. doi:10.1063/1.1504867

    Article  CAS  Google Scholar 

  • Conner WC, Tompsett GA (2008) How could and do microwaves influence chemistry at interfaces? J Phys Chem B 112:2110–2118. doi:10.1021/jp0775247

    Article  CAS  Google Scholar 

  • Cuong TV, Pham VH, Chung JS, Shin EW, Yoo DH, Hahn SH et al (2010) Solution-processed ZnO-chemically converted graphene gas sensor. Mater Lett 64:2479–2482. doi:10.1016/j.matlet.2010.08.027

    Article  CAS  Google Scholar 

  • Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2009) Raman spectrum of graphene and graphene layers. Phys Rev Lett 9:187401. doi:10.1103/PhysRevLett.97.187401

    Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  • Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802

    Article  CAS  Google Scholar 

  • Gopalakrishnan K, Joshi HM, Kumar P, Panchakarla LS, Rao CNR (2011) Selectivity in the photocatalytic properties of the composites of TiO2 nanoparticles with B- and N-doped graphenes. Chem Phys Lett 511:304–308. doi:10.1016/j.cplett.2011.06.033

    Article  CAS  Google Scholar 

  • Hassan HMA, Abdelsayed V, Khder AER, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837

    Article  CAS  Google Scholar 

  • Herring NP, AbouZeid K, Mohamed MB, Pinsk J, El-Shall MS (2011) Formation mechanisms of gold–zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis. Langmuir 27:15146–15154. doi:10.1021/la201698k

    Article  CAS  Google Scholar 

  • Herring NP, Panda AB, AbouZeid KM, Olson C, Patel A, El-Shall MS (2013) Microwave synthesis of metal oxide nanoparticles. In: Metal oxide nanomaterials for chemical sensors. Series title 7427. Springer, New York

  • Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039. doi:10.1021/la902142b

    Article  CAS  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  • Jagadish C, Pearton SJ (2006) Zinc oxide bulk, thin films and nanostructures. Elsevier, New York

    Google Scholar 

  • Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527. doi:10.1021/jz900265j

    Article  CAS  Google Scholar 

  • Kerr LL, Li XN, Canepa M, Sommer AJ (2007) Raman analysis of nitrogen doped ZnO. Thin Solid Films 515:5282–5286. doi:10.1016/j.tsf.2006.12.186

    Article  CAS  Google Scholar 

  • Kim G, Jhi S-H (2011) Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 5:805

    Article  CAS  Google Scholar 

  • Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407–409

    Article  CAS  Google Scholar 

  • Lee JM, Pyun YB, Yi J, Choung JW, Park WI (2009) ZnO nanorod-graphene hybrid architectures for multifunctional conductors. J Phys Chem C 113:19134–19138. doi:10.1021/jp9078713

    Article  CAS  Google Scholar 

  • Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283

    Article  CAS  Google Scholar 

  • Lin Y, Zhang K, Chen W, Liu Y, Geng Z, Zeng J, Pan N, Yan L, Wang W, Hou JG (2010) Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano 4:3033–3038. doi:10.012/nn100134j

    Article  CAS  Google Scholar 

  • Liu J, Jeong H, Liu J, Lee K, Park J-Y, Ahn YH et al (2010) Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48:2282–2289. doi:10.1016/j.carbon.2010.03.002

    Article  CAS  Google Scholar 

  • Lupan O, Emelchenko GA, Ursaki VV, Chai G, Redkin AN, Gruzintsev AN et al (2010) Synthesis and characterization of ZnO nanowires for nanosensor applications. Mater Res Bull. 45:1026–1032. doi:10.1016/j.materresbull.2010.03.027

    Article  CAS  Google Scholar 

  • Lv T, Pan LK, Liu XJ, Lu T, Zhu G, Sun Z (2011) Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J Alloy Compd 509:10086–10091. doi:10.1016/j.jallcom.2011.08.045

    Article  CAS  Google Scholar 

  • Minne SC, Manalis SR, Quate CF (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett 67:3918–3920

    Article  CAS  Google Scholar 

  • Mohamed MB, AbouZeid KM, Abdelsayed V, Aljarash AA, El-Shall MS (2010) Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis. ACS Nano 4:2766–2772

    Article  CAS  Google Scholar 

  • Moussa S, Abdelsayed V, El-Shall MS (2011) Laser synthesis of Pt, Pd, CoO and Pd-CoO nanoparticle catalysts supported on graphene. Chem Phys Lett 510:179–184

    Article  CAS  Google Scholar 

  • Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2012) Pd-partially reduced graphene oxide catalysts (Pd/PRGO): laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon–carbon cross coupling reactions. ACS Catal 2:145–154. doi:10.1021/cs200497e

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson ML, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  • Panda AB, Glaspell G, El-Shall MS (2006) Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. J Am Chem Soc 128:2790–2791

    Article  CAS  Google Scholar 

  • Panda AB, Glaspell G, El-Shall MS (2007) Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J Phys Chem C 111:1861–1864

    Article  CAS  Google Scholar 

  • Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progresses in processing and properties of ZnO. Prog Mater Sci 50:293–340. doi:10.1016/j.pmatsci.2004.04.001

    Article  CAS  Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  • Raula M, Rashid MH, Paira TK, Dinda E, Mandal TK (2010) Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties. Langmuir 26:8769–8782. doi:10.1021/la904507q

    Article  CAS  Google Scholar 

  • Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki–Miyaura coupling reaction. J Am Chem Soc 131:8262

    Article  CAS  Google Scholar 

  • Siamaki AR, Khder AERS, Abdelsayed V, El-Shall MS, Gupton BF (2011) Microwave-assisted synthesis of palladium nanoparticles supported on graphene: a highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. J Catal 279:1–11

    Article  CAS  Google Scholar 

  • Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858. doi:10.1088/0953-8984/16/25/R01

    Article  CAS  Google Scholar 

  • Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, New York

    Book  Google Scholar 

  • Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873. doi:10.1021/la900905h

    Article  CAS  Google Scholar 

  • Williams G, Seger B, Kamat PV (2008) TiO(2)-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. doi:10.1021/nn800251f

    Article  CAS  Google Scholar 

  • Wu SX, Yin ZY, He QY, Huang XA, Zhou XZ, Zhang H (2010) Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J Phys Chem C 114:11816–11821. doi:10.1021/jp103696u

    Article  CAS  Google Scholar 

  • Xu TG, Zhang LW, Cheng HY, Zhu YF (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B Environ 101:382–387. doi:10.1016/j.apcatb.2010.10.007

    Article  CAS  Google Scholar 

  • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152. doi:10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  • Yin ZY, Wu SX, Zhou XZ, Huang X, Zhang QC, Boey F et al (2010) Electrochemical deposition of ZnO Nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307–312. doi:10.1002/smll.200901968

    Article  CAS  Google Scholar 

  • Zedan AF, Sappal S, Moussa S, El-Shall MS (2010) Ligand-controlled microwave synthesis of cubic and hexagonal CdSe nanocrystals supported on graphene. Photoluminescence quenching by graphene. J Phys Chem C 114:19920–19927

    Article  CAS  Google Scholar 

  • Zhang JW, Zhu PL, Li JH, Chen JM, Wu ZS, Zhang ZJ (2009) Fabrication of octahedral-shaped polyol-based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single-crystal ZnO nanoparticles. Cryst Growth Des 9:2329–2334. doi:10.1021/cg8012156

    Article  CAS  Google Scholar 

  • Zheng MJ, Zhang LD, Li GH, Shen WZ (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem Phys Lett 363:123–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE-0911146, OISE-1002970 and CHE-0922582) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samy El-Shall.

Additional information

This article is part of the topical collection on nanomaterials in energy, health and environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herring, N.P., Almahoudi, S.H., Olson, C.R. et al. Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J Nanopart Res 14, 1277 (2012). https://doi.org/10.1007/s11051-012-1277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1277-7

Keywords

Navigation