Skip to main content

Advertisement

Log in

Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (ZT) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (ΔT = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Martín-González M, Caballero-Calero O, Díaz-Chao P (2013) Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. Renew Sust Energy Rev 24:288–305

    Article  CAS  Google Scholar 

  2. He W, Zhang G, Zhang X, Ji J, Li G, Zhao X (2015) Recent development and application of thermoelectric generator and cooler. Appl Energy 143:1–25

    Article  Google Scholar 

  3. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731

    Article  CAS  Google Scholar 

  4. Kim W, Zide J, Gossard A et al (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96(4):045901

    Article  CAS  Google Scholar 

  5. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841

    Article  CAS  Google Scholar 

  6. Wang L, Liu Y, Zhang Z et al (2017) Polymer composites-based thermoelectric materials and devices. Compos Part B Eng 122:145–155

    Article  CAS  Google Scholar 

  7. Toshima N (2017) Recent progress of organic and hybrid thermoelectric materials. Synth Met 225:3–21

    Article  CAS  Google Scholar 

  8. Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4(4):2445–2451

    Article  CAS  Google Scholar 

  9. Khalid M, Tumelero MA, Brandt IS, Zoldan VC, Acuña JJS, Pasa AA (2013) Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids. Indian J Mater Sci 2013:1–7

    Article  Google Scholar 

  10. Park YW, Yoon CO, Lee CH, Shirakawa H, Suezaki Y, Akagi K (1989) Conductivity and thermoelectric power of the newly processed polyacetylene. Synth Met 28(3):D27–D34

    Article  CAS  Google Scholar 

  11. Kemp NT, Kaiser AB, Liu CJ et al (1999) Thermoelectric power and conductivity of different types of polypyrrole. J Polym Sci B Polym Phys 37(9):953–960

    Article  CAS  Google Scholar 

  12. Culebras M, Uriol B, Gomez CM, Cantarero A (2015) Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole. Phys Chem Chem Phys 17(23):15140–15145

    Article  CAS  Google Scholar 

  13. Wu J, Sun Y, Pei W-B, Huang L, Xu W, Zhang Q (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synth Met 196:173–177

    Article  CAS  Google Scholar 

  14. Lévesque I, Bertrand PO, Blouin N et al (2007) Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem Mater 19(8):2128–2138

    Article  CAS  Google Scholar 

  15. Aïch RB, Blouin N, Bouchard A, Leclerc M (2009) Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem Mater 21(4):751–757

    Article  CAS  Google Scholar 

  16. Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162(11–12):912–917

    Article  CAS  Google Scholar 

  17. Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2015) Recent progress on PEDOT-based thermoelectric materials. Materials 8(2):732–750

    Article  CAS  Google Scholar 

  18. Sun K, Zhang S, Li P et al (2015) Review on application of PEDOTs and PEDOT:pSS in energy conversion and storage devices. J Mater Sci: Mater Electron 26(7):4438–4462

    CAS  Google Scholar 

  19. Kim JY, Jung JH, Lee DE, Joo J (2002) Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met 126(2):311–316

    Article  CAS  Google Scholar 

  20. Yamashita M, Otani C, Shimizu M, Okuzaki H (2011) Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy. Appl Phys Lett 99(4):143307

    Article  CAS  Google Scholar 

  21. Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45(25):8443–8450

    Article  CAS  Google Scholar 

  22. Wei Q, Mukaida M, Naitoh Y, Ishida T (2013) Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents. Adv Mater 25(20):2831–2836

    Article  CAS  Google Scholar 

  23. Fan B, Mei X, Ouyang J (2008) Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 41(16):5971–5973

    Article  CAS  Google Scholar 

  24. Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater 1(4):1500017

    Article  CAS  Google Scholar 

  25. Zhu Z, Liu C, Jiang F, Xu J, Liu E (2017) Effective treatment methods on PEDOT:PSS to enhance its thermoelectric performance. Synth Met 225:31–40

    Article  CAS  Google Scholar 

  26. Yi C, Wilhite A, Zhang L et al (2015) Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by binary secondary dopants. ACS Appl Mater Interfaces 7(17):8984–8989

    Article  CAS  Google Scholar 

  27. Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2014) Polymer thermoelectric modules screen-printed on paper. RSC Adv 4(54):28802–28806

    Article  CAS  Google Scholar 

  28. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050

    Article  CAS  Google Scholar 

  29. Sun T, Peavey JL, David Shelby M, Ferguson S, O’Connor BT (2015) Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers Manag 103:674–680

    Article  CAS  Google Scholar 

  30. Owoyele O, Ferguson S, O’Connor BT (2015) Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 147:184–191

    Article  Google Scholar 

  31. Søndergaard RR, Hösel M, Espinosa N, Jørgensen M, Krebs FC (2013) Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci Eng 1(2):81–88

    Article  CAS  Google Scholar 

  32. Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Therm Fluid Sci 25:55–64

    Article  CAS  Google Scholar 

  33. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, Hoboken

    Book  Google Scholar 

  34. Ranut P (2016) On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl Therm Eng 101:496–524

    Article  CAS  Google Scholar 

  35. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625

    Article  CAS  Google Scholar 

  36. Levy FL (1981) A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int J Refrig 4(4):223–225

    Article  CAS  Google Scholar 

  37. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1(3):187–191

    Article  CAS  Google Scholar 

  38. Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44(4):827–836

    Article  CAS  Google Scholar 

  39. Dai Z, Nawaz K, Park YG, Bock J, Jacobi AM (2010) Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams. Int Commun Heat Mass Transf 37(6):575–580

    Article  CAS  Google Scholar 

  40. Yao Y, Wu H, Liu Z (2015) A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams. Int J Therm Sci 97:56–67

    Article  CAS  Google Scholar 

  41. Calmidi VV, Mahajan RL (1999) Effective thermal conductivity of high porosity fibrous metal foams. J Heat Transf 121(2):466–471

    Article  CAS  Google Scholar 

  42. Bhattacharya A, Calmidi VV, Mahajan RL (2002) Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 45(5):1017–1031

    Article  CAS  Google Scholar 

  43. Feng Y, Zheng H, Zhu Z, Zu F (2003) The microstructure and electrical conductivity of aluminum alloy foams. Mater Chem Phys 78(1):196–201

    Article  Google Scholar 

  44. Xiandong M, Peyton AJ (2006) Eddy current measurement of the electrical conductivity and porosity of metal foams. IEEE Trans Instrum Meas 55(2):570–576

    Article  Google Scholar 

  45. Hakamada M, Kuromura T, Chen Y, Kusuda H, Mabuchi M (2007) Influence of porosity and pore size on electrical resistivity of porous aluminum produced by spacer method. Mater Trans 48(1):32–36

    Article  CAS  Google Scholar 

  46. Liu PS, Li TF, Fu C (1999) Relationship between electrical resistivity and porosity for porous metals. Mater Sci Eng, A 268(1–2):208–215

    Article  Google Scholar 

  47. Kováčik J, Simančík F (1998) Aluminium foam—modulus of elasticity and electrical conductivity according to percolation theory. Scr Mater 39(2):239–246

    Article  Google Scholar 

  48. Dharmasena KP, Wadley HNG (2002) Electrical conductivity of open-cell metal foams. J Mater Res 17(3):625–631

    Article  CAS  Google Scholar 

  49. Chernyshev LI, Skorokhod VV (2003) Effects of porous structure on the electrical conductivity of highly porous metal-matrix materials. Powder Metall Met Ceram 42(1):88–93

    Article  CAS  Google Scholar 

  50. Zuruzi AS, Siow KS (2015) Electrical conductivity of porous silver made from sintered nanoparticles. Electron Mater Lett 11(2):308–314

    Article  CAS  Google Scholar 

  51. Zuruzi AS, Mazulianawati MS (2016) Effect of ligament morphology on electrical conductivity of porous silver. J Electron Mater 45(12):6113–6122

    Article  CAS  Google Scholar 

  52. Kanaun S, Tkachenko O (2008) Effective conductive properties of open-cell foams. Int J Eng Sci 46(6):551–571

    Article  CAS  Google Scholar 

  53. Pandey S, Bagwe RP, Shah DO (2003) Effect of counterions on surface and foaming properties of dodecyl sulfate. J Colloid Interface Sci 267(1):160–166

    Article  CAS  Google Scholar 

  54. Khan ZU, Edberg J, Hamedi MM et al (2016) Thermoelectric polymers and their elastic aerogels. Adv Mater 28(22):4556–4562

    Article  CAS  Google Scholar 

  55. Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH (2014) Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J Mater Chem A 2(18):6532–6539

    Article  CAS  Google Scholar 

  56. Xiong J, Jiang F, Zhou W, Liu C, Xu J (2015) Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution–filtration. RSC Adv 5(75):60708–60712

    Article  CAS  Google Scholar 

  57. Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273

    Article  CAS  Google Scholar 

  58. Yang E, Kim J, Jung BJ, Kwak J (2015) Enhanced thermoelectric properties of sorbitol-mixed PEDOT:PSS thin films by chemical reduction. J Mater Sci: Mater Electron 26(5):2838–2843

    CAS  Google Scholar 

  59. Greco F, Zucca A, Taccola S et al (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7(22):10642–10650

    Article  CAS  Google Scholar 

  60. Singh V, Arora S, Arora M, Sharma V, Tandon RP (2014) Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Semicond Sci Tech 29(4):045020

    Article  CAS  Google Scholar 

  61. Wichiansee W, Sirivat A (2009) Electrorheological properties of poly(dimethylsiloxane) and poly(3,4-ethylenedioxy thiophene)/poly(stylene sulfonic acid)/ethylene glycol blends. Mater Sci Eng, C 29(1):78–84

    Article  CAS  Google Scholar 

  62. Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107(9):094308

    Article  CAS  Google Scholar 

  63. Tarkhanyan RH, Niarchos DG (2013) Seebeck coefficient of graded porous composites. J Mater Res 28(17):2316–2324

    Article  CAS  Google Scholar 

  64. Kirihara K, Wei Q, Mukaida M, Ishida T (2017) Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synth Met 225:41–48

    Article  CAS  Google Scholar 

  65. Du Y, Cai K, Chen S et al (2015) Thermoelectric fabrics: toward power generating clothing. Sci Rep 5:6411

    Article  CAS  Google Scholar 

  66. Kong F-F, Liu C-C, Xu J-K et al (2011) Simultaneous enhancement of electrical conductivity and seebeck coefficient of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films treated with urea. Chin Phys Lett 28(3):037201

    Article  CAS  Google Scholar 

  67. Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12(8):719–723

    Article  CAS  Google Scholar 

  68. Wang X-D, Huang Y-X, Cheng C-H, Ta-Wei Lin D, Kang C-H (2012) A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 47(1):488–497

    Article  CAS  Google Scholar 

  69. Chen W-H, Wang C-C, Hung C-I (2014) Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Convers Manag 87:566–575

    Article  Google Scholar 

  70. Chen W-H, Liao C-Y, Hung C-I, Huang W-L (2012) Experimental study on thermoelectric modules for power generation at various operating conditions. Energy 45(1):874–881

    Article  Google Scholar 

  71. Gou X, Xiao H, Yang S (2010) Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energy 87(10):3131–3136

    Article  Google Scholar 

  72. Chen W-H, Liao C-Y, Wang C-C, Hung C-I (2015) Evaluation of power generation from thermoelectric cooler at normal and low-temperature cooling conditions. Energy Sustain Dev 25:8–16

    Article  CAS  Google Scholar 

  73. Bharti M, Singh A, Samanta S, Aswal DK (2017) Conductive polymers: creating their niche in thermoelectric domain. Prog Mater Sci 93:270–310

    Article  CAS  Google Scholar 

  74. Ouyang J (2013) “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34(5):423–436

    Article  CAS  Google Scholar 

  75. Kroon R, Mengistie DA, Kiefer D et al (2016) Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem Soc Rev 45(22):6147–6164

    Article  CAS  Google Scholar 

  76. Liu C, Lu B, Yan J et al (2010) Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth Met 160(23):2481–2485

    Article  CAS  Google Scholar 

  77. Jiang F-X, Xu J-K, Lu B-Y, Xie Y, Huang R-J, Li L-F (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Chin Phys Lett 25(6):2202–2205

    Article  CAS  Google Scholar 

  78. Chang K-C, Jeng M-S, Yang C-C et al (2009) The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films. J Electron Mater 38(7):1182–1188

    Article  CAS  Google Scholar 

  79. Scholdt M, Do H, Lang J et al (2010) Organic semiconductors for thermoelectric applications. J Electron Mater 39(9):1589–1592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has received financial support from the Thailand Graduate Institute of Science and Technology (TGIST). The scholar student ID is TG-55-20-57-052D, and the grant number is TGIST 01-57-052. The authors gratefully acknowledge the National Nanotechnology Center (NANOTEC), National Metal and Materials Technology Center (MTEC), and Nanotechnology Research Center (TNRC) at Department of Physics, Faculty of Science, Rajamangala University of Technology Suvarnabhumi for the access to the equipment and facilities. We would also like to thank the Integrated Nanosystem Laboratory (INS) members for their help and suggestion in this research and Prof. Supapan Seraphin for a fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paisan Khanchaitit or Monrudee Liangruksa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongkham, W., Lertsatitthanakorn, C., Jitpukdee, M. et al. Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development. J Mater Sci 54, 8187–8201 (2019). https://doi.org/10.1007/s10853-019-03480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03480-1

Navigation