Skip to main content
Log in

Effect of Ligament Morphology on Electrical Conductivity of Porous Silver

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigate the effect of ligament morphology on electrical conductivity of open cell porous silver (Ag). Porous Ag was formed when silver nanoparticles in an organic phase were annealed at 150°C for durations ranging from 1 to 5 min. Electrical conductivity of porous Ag was about 20% of bulk value after 5 min annealing. Porous Ag was modeled as a collection of Kelvin cell (truncated octahedrons) structures comprised of conjoined conical ligaments and spherical vertices. An analytical expression for electrical conductivity was obtained. Electrical conductivity normal to hexagonal faces of the unit cell was computed. Our model indicates contribution of grain boundary to electrical resistance increases significantly after the first minute of annealing and plateaus thereafter. Using experimental electrical conductivity data as an input, the model suggests that the ratio, n, of surfaces of one half of a conjoined cone ligament is between 0.7 and 1.0. Average deviation from experimentally determined relative electrical conductivity, Δσ r, was minimal when n = 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wolfson and E. George, United States of America Patent US2774747 A (1956).

  2. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).

    Article  Google Scholar 

  3. Y. Yan, Y. Guan, X. Chen, and G.-G. Lu, J. Electron. Packag. 135, 041003 (2013).

    Article  Google Scholar 

  4. K.S. Tan and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 4 (2014).

    Google Scholar 

  5. C. Yang, C.P. Wong, and M.M.F. Yuen, J. Mater. Chem. C 1, 4052 (2013).

    Article  Google Scholar 

  6. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 1531171 (2010).

    Google Scholar 

  7. D. Kim and J. Moon, Electrochem. Solid-State Lett. 8, J30 (2005).

    Article  Google Scholar 

  8. A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun. 26, 281 (2005).

    Article  Google Scholar 

  9. J. Jiu, K. Murai, K. Kim, and K. Suganuma, J. Mater. Sci. Mater. Electron. 21, 713 (2010).

    Article  Google Scholar 

  10. T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, J. Electron. Mater. 36, 1333 (2007).

    Article  Google Scholar 

  11. K.S. Siow and Y.T. Lin, J. Electron. Packag. 138, 020804 (2016).

    Article  Google Scholar 

  12. J.-T. Wu, S.L.-C. Hsu, M.-H. Tsai, Y.-F. Liu, and W.-S. Hwang, J. Mater. Chem. 22, 15599 (2012).

    Article  Google Scholar 

  13. C.W. Chiu, P.D. Hong, and J.J. Lin, Langmuir 27, 11690 (2011).

    Article  Google Scholar 

  14. M. Hummelgard, R. Zhang, H.-E. Nilsson, and H. Olin, PLoS ONE 6, 17209 (2011).

    Article  Google Scholar 

  15. J. Liu, Y. Cao, X. Wang, J. Duan, and X. Zeng, I.E.E.E. Trans. Adv. Packag. 33, 899 (2010).

    Article  Google Scholar 

  16. R.A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).

    Article  Google Scholar 

  17. H. Alarifi, A. Hu, M. Yavuz, and N.Y. Zhou, J. Electron. Mater. 40, 1394 (2011).

    Article  Google Scholar 

  18. S. Kim, S. Won, G.-D. Sim, I. Park, and S.-B. Lee, Nanotechnology 24, 085701 (2013).

    Article  Google Scholar 

  19. K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  20. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen, and H. Seppa, Nanotechnology 19, 175201 (2008).

    Article  Google Scholar 

  21. C. Werner, D. Godlinski, V. Zollmer, and M. Busse, J. Mater. Sci. Mater. Electron. 24, 4367 (2013).

    Article  Google Scholar 

  22. P. Peng, A. Hu, and Y. Zhou, Appl. Phys. A Mater. Sci. Process. 108, 685 (2012).

    Article  Google Scholar 

  23. K. Maekawa, K. Yamasaki, T. Niizeki, M. Mita, Y. Matsuba, N. Terada, and H. Saito, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 868 (2012).

    Article  Google Scholar 

  24. K.C. Yung, S. Wu, and H. Liem, J. Mater. Sci. 44, 154 (2009).

    Article  Google Scholar 

  25. M. Allen, A. Alastalo, M. Suhonen, T. Mattila, J. Leppaniemi, and H. Seppa, IEEE Trans. Microwave Theory Tech. 59, 1419 (2011).

    Article  Google Scholar 

  26. H. Alarifi, M. Atis, C. Ozdogan, A. Hu, M. Yavuz, and N.Y. Zhou, J. Phys. Chem. C 117, 12289 (2013).

    Article  Google Scholar 

  27. P. Peng, A. Hu, H. Huang, A.P. Gerlich, B. Zhao, and N.Y. Zhou, J. Mater. Chem. 22, 12297 (2012).

    Google Scholar 

  28. H. Pan, S.H. Ko, and C.P. Grigoropoulos, J. Heat Transf. 130, 092404 (2008).

    Article  Google Scholar 

  29. A.S. Zuruzi and K.S. Siow, Electron. Mater. Lett. 11, 308 (2015).

    Article  Google Scholar 

  30. A.A. Matvienko and I.Y. Prosanov, Phys. Solid State 53, 2203 (2010).

    Google Scholar 

  31. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compound (Hoboken: Wiley, 2009).

    Google Scholar 

  32. M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, Langmuir 22, 8581 (2006).

    Article  Google Scholar 

  33. B.M. Amoli, G. Sarang, A. Hu, N.Y. Zhou, and B. Zhao, J. Mater. Chem. 22, 20048 (2012).

    Article  Google Scholar 

  34. M. Tobita, Y. Yasuda, E. Ide, J. Ushio, and T. Morita, J. Nanopart. Res. 12, 2135 (2010).

    Article  Google Scholar 

  35. F.M. Smits, Bell Syst. Tech. J. 37, 711 (1958).

    Article  Google Scholar 

  36. L.B. Valdes, Proc. IRE 42, 420 (1954).

    Article  Google Scholar 

  37. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.G. Wadley, Metal Foams: A Design Guide (Oxford: Butterworth-Heinemann, 2000).

    Google Scholar 

  38. K.P. Dharmasena and H.G. Wadley, J. Mater. Res. 17, 625 (2002).

    Article  Google Scholar 

  39. P.S. Liu, T.F. Li, and C. Fu, Mater. Sci. Eng. A A268, 208 (1999).

    Article  Google Scholar 

  40. Y. Feng, H.W. Zheng, Z.G. Zhu, and F.Q. Zu, Mater. Chem. Phys. 78, 196 (2002).

    Article  Google Scholar 

  41. J.F. Wang, J.K. Carson, J. Willix, M.F. North, and D.J. Cleland, Acta Mater. 56, 5138 (2008).

    Article  Google Scholar 

  42. J. Banhart, Prog. Mater Sci. 46, 559 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Samah Zuruzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuruzi, A.S., Mazulianawati, M.S. Effect of Ligament Morphology on Electrical Conductivity of Porous Silver. J. Electron. Mater. 45, 6113–6122 (2016). https://doi.org/10.1007/s11664-016-4879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4879-5

Keywords

Navigation