Skip to main content
Log in

A comparative study on the effects of three commercial Ti–B-based grain refiners on the impact properties of A356 cast aluminium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of three commercial Ti–B-based grain refiners on the impact properties of the A356 cast aluminium alloy was assessed. The impact tests were performed by means of an instrumented Charpy pendulum. During impact testing, the maximum load and the total impact energy, as well as its complementary contributions, the energy at maximum load and the crack propagation energy, were measured. Impact properties were studied as a function of size and shape of the main microstructural features, which were analysed by means of optical microscopy and scanning electron microscopy. The results show that the influence of grain refinement on microstructure involves beneficial and detrimental concurrent effects which strongly affect impact properties. The total impact energy decreases with the addition of all the grain refiners due to a shift from a mixed transgranular–intergranular fracture mode to a more severe transgranular mode. Crack initiation and propagation occur mainly through the fracture of Fe-intermetallics and brittle Si particles, and the mechanism of void coalescence. No direct correlation between grain size and impact properties is found. Moreover, the aspect ratio of eutectic Si particles does not change with grain refinement, implying that there are no mutual poisoning effects between Sr and B. Total impact energy is found to depend on both SDAS and β-platelets size. The concurrent effects of SDAS and β-platelets average maximum length on total impact energy can be taken into account by the multiple regression analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Maxwell I, Hellawell A (1975) Acta Metall 23:229

    Article  CAS  Google Scholar 

  2. McCartney DG (1989) Int Mater Rev 34:247

    CAS  Google Scholar 

  3. Schumacher P, Greer AL, Worth J, Evans PV, Kearns MA, Fisher P, Green AH (1998) Mater Sci Technol 14:394

    Article  CAS  Google Scholar 

  4. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ (2000) Acta Mater 48:2823

    Article  CAS  Google Scholar 

  5. Birol Y (2000) J Alloys Compd 486:219

    Article  Google Scholar 

  6. Lee C, Chen S (2002) Mater Sci Eng A 325:242

    Article  Google Scholar 

  7. Limmaneevichitr C, Eidhed W (2003) Mater Sci Eng A 355:174

    Article  Google Scholar 

  8. Wang C, Wang M, Yu B, Chen D, Qin P, Feng M, Dai Q (2007) Mater Sci Eng A 459:238

    Article  Google Scholar 

  9. Zhang Z, Bian X, Wang Y, Liu X (2003) Mater Sci Eng A 352:8

    Article  Google Scholar 

  10. Cibula A (1949) J Inst Met 76:321

    CAS  Google Scholar 

  11. Mohanty PS, Gruzleski JE (1995) Acta Metall Mater 43:2001

    Article  CAS  Google Scholar 

  12. Jones GP, Pearson J (1976) Metall Trans B 7:223

    Article  Google Scholar 

  13. Sigworth GK (1984) Metall Trans A 15:277

    Google Scholar 

  14. Sigworth GK (1986) Author’s Reply. Metall Trans A 17:349

    Article  Google Scholar 

  15. Johnsson M, Backerud L (1996) Z Metallkd 87:216

    CAS  Google Scholar 

  16. Tøndel PA (1994) Grain refinement of hypoeutectic Al–Si foundry alloys. Ph.D. Thesis, University of Trondheim

  17. Spittle JA, Sadli S (1995) Mater Sci Technol 11:533

    Article  CAS  Google Scholar 

  18. Easton M, StJohn D (1999) Metall Mater Trans A 30:1623

    Google Scholar 

  19. Quested TE, Greer AL (2004) Acta Mater 52:3859

    Article  CAS  Google Scholar 

  20. Sofyan BT, Kharistal DJ, Lukfawan Trijati, Purba K, Susanto RE (2010) Mater Desi 31:536

    Google Scholar 

  21. Murali S, Raman KS, Murthy KSS (1992) Mater Sci Eng A 151:1

    Article  Google Scholar 

  22. Ma Z, Samuel AM, Samuel FH (2003) AFS Transactions 03–101:255

    Google Scholar 

  23. Shivkumar S, Wang L, Keller C (1994) J Mater Eng Perform 3:83

    Article  CAS  Google Scholar 

  24. Zhang DL, Zheng LH, StJohn D (2002) J Light Met 2:27

    Article  Google Scholar 

  25. Merlin M, Timelli G, Bonollo F, Garagnani GL (2009) J Mater Process Tech 209:1060

    Article  CAS  Google Scholar 

  26. Basavakumar KG, Mukunda PG, Chakraborty M (2008) Mater Charact 59:283

    Article  CAS  Google Scholar 

  27. Campbell J (2003) Castings – Second Edition. Elsivier Butterworth-Heinemann, Oxford

    Google Scholar 

  28. Shabestari SG, Malekan M (2005) Can Metall Q 44:305

    Article  CAS  Google Scholar 

  29. Shabestari SG, Malekan M (2010) J Alloy Compd 492:134

    Article  CAS  Google Scholar 

  30. Wang M, Wang S, Liu Z, Liu Z, Song T, Zuo X (2006) Mater Sci Eng A 416:312

    Article  Google Scholar 

  31. Haro-Rodríguez S, Goytia-Reyes RE, Dwivedi DK, Baltazar-Hernández VH, Flores-Zúñiga H, Pérez-López MJ (2011) Mater Des 32:1865

    Article  Google Scholar 

  32. Mohamed AMA, Samuel AM, Samuel FH, Doty HW (2009) Mater Des 30:3943

    Article  CAS  Google Scholar 

  33. Cáceres CH, Davidson CJ, Griffiths JR (1995) Mater Sci Eng A 197:171

    Article  Google Scholar 

  34. Wang QG (2003) Metall Mater Trans A 34:2887

    Article  Google Scholar 

  35. Cáceres CH, Griffiths JR (1996) Acta Mater 44:25

    Article  Google Scholar 

  36. Berto F, Lazzarin P, Wang CH (2004) Int J Fract 127:265

    Article  Google Scholar 

  37. Meyer P, Massinon D, Guerin P (1997) Influence of Microstructure on the Static and Thermal Fatigue Properties of 319 Alloys. SAE International, Warrendale

    Book  Google Scholar 

  38. Li Z, Samuel AM, Samuel FH, Ravindran C, Doty HW, Valtierra S (2004) Mater Sci Eng A 26:2359

    Google Scholar 

  39. Kori SA, Murty BS, Chakraborty M (2000) Mater Sci Eng A 283:94

    Article  Google Scholar 

  40. Paray F, Kulunk B, Gruzleski JE (2000) Int J Cast Metals Res 13:17

    CAS  Google Scholar 

  41. Pan EN, Hsieh MW, Jang SS, Loper CR Jr (1998) Study of the Influence of Processing Parameters on the Microstructure and Properties of A356 Aluminum Alloy. Defense Technical Information Center OAI-PMH Repository, In

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the foundry “Fonderia Scacchetti Leghe Leggere s.r.l” of S. Felice sul Panaro (Modena, Italy) for the use of its installations and equipments. The authors also acknowledge Mr. Lorenzo Pivetti for his helpful contributions during foundry activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Casari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casari, D., Merlin, M. & Garagnani, G.L. A comparative study on the effects of three commercial Ti–B-based grain refiners on the impact properties of A356 cast aluminium alloy. J Mater Sci 48, 4365–4377 (2013). https://doi.org/10.1007/s10853-013-7252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7252-6

Keywords

Navigation