Skip to main content
Log in

The hyperfine puzzle of strong-field bound-state QED

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The hyperfine splitting in heavy highly charged ions provide the means to test QED in extremely strong magnetic fields. In order to provide a meaningful test, the splitting has to be measured in H-like and Li-like ions to remove uncertainties from nuclear structure. This has been achieved at the experimental storage ring ESR but a discrepancy to the theoretical prediction of more than 7σ was observed. We report on these measurements as well as on NMR measurements that were performed to solve this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanneke, D., Fogwell, S., Gabrielse, G.: New determination of the fine structure constant from the electron g value and QED. Phys. Rev. Lett. 100(12), 120801 (2008)

    Article  ADS  Google Scholar 

  2. Pastor, P.C., Giusfredi, G., Natale, P.D., Hagel, G., de Mauro, C., Inguscio, M.: Absolute frequency measurements of the \({2}^{3}{S}_{1}{\rightarrow }{2}^{3}{P}_{0,1,2}\) atomic helium transitions around 1083 nm. Phys. Rev. Lett. 92, 023001 (2004)

    Article  ADS  Google Scholar 

  3. Kato, K., Skinner, T.D.G., Hessels, E.A.: Ultrahigh-precision measurement of the n = 2 triplet P fine structure of atomic helium using frequency-offset separated oscillatory fields. Phys. Rev. Lett. 121, 143002 (2018)

    Article  ADS  Google Scholar 

  4. Wagner, A., Sturm, S., Köhler, F., Glazov, D.A., Volotka, A.V., Plunien, G., Quint, W., Werth, G., Shabaev, V.M., Blaum, K.: g Factor of Lithiumlike Silicon 28Si11+. Phys. Rev. Lett. 110, 033003 (2013)

    Article  ADS  Google Scholar 

  5. Köhler, F., Blaum, K., Block, M., Chenmarev, S., Eliseev, S., Glazov, D., Goncharov, M., Hou, J., Kracke, A., Nesterenko, D., Novikov, Y., Quint, W., Ramirez, E., Shabaev, V., Sturm, S., Volotka, A., Werth, G.: Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. Commun. 7, 10246 (2016)

    Article  ADS  Google Scholar 

  6. Gumberidze, A., Stöhlker, T., Banas, D., Beckert, K., Beller, P., Beyer, H.F., Bosch, F., Hagmann, S., Kozhuharov, C., Liesen, D., Nolden, F., Ma, X., Mokler, P.H., Steck, M., Sierpowski, D., Tashenov, S.: Quantum electrodynamics in strong electric fields: the ground-state lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94(22), 223001 (2005)

    Article  ADS  Google Scholar 

  7. Beiersdorfer, P., Chen, H., Thorn, D.B., Träbert, E.: Measurement of the two-loop lamb shift in Lithiumlike U89+. Phys. Rev. Lett. 95, 233003 (2005)

    Article  ADS  Google Scholar 

  8. Klaft, I., Borneis, S., Engel, T., Fricke, B., Grieser, R., Huber, G., Kühl, T., Marx, D., Neumann, R., Schröder, S., Seelig, P., Völker, L.: Precision laser spectroscopy of the ground state hyperfine splitting of hydrogenlike 209Bi82+. Phys. Rev. Lett. 73(18), 2425 (1994)

    Article  ADS  Google Scholar 

  9. Seelig, P., Borneis, S., Dax, A., Engel, T., Faber, S., Gerlach, M., Holbrow, C., Huber, G., Kühl, T., Marx, D., Meier, K., Merz, P., Quint, W., Schmitt, F., Tomaselli, M., Völker, L., Winter, H., Würtz, M., Beckert, K., Franzke, B., Nolden, F., Reich, H., Steck, M., Winkler, T.: Ground state hyperfine splitting of hydrogenlike 207Pb81+ by laser excitation of a bunched Ion beam in the GSI experimental storage ring. Phys. Rev. Lett. 81(22), 4824 (1998)

    Article  ADS  Google Scholar 

  10. López-Urrutia, J.R.C., Beiersdorfer, P., Widmann, K., Birkett, B.B., Martensson-Pendrill, A.M., Gustavsson, M.G.H.: Nuclear magnetization distribution radii determined by hyperfine transitions in the 1s level of H-like ions 185Re74+ and 187Re74+. Phys. Rev. A 57(3), 879 (1998)

    Article  ADS  Google Scholar 

  11. Crespo López-Urrutia, J.R., Beiersdorfer, P., Savin, D.W., Widmann, K.: Direct observation of the spontaneous emission of the hyperfine transition F = 4 to F = 3 in ground state hydrogenlike 165Ho66+ in an electron beam ion trap. Phys. Rev. Lett. 77(5), 826 (1996)

    Article  ADS  Google Scholar 

  12. Beiersdorfer, P., Utter, S.B., Wong, K.L., López-Urrutia, J.R.C., Britten, J.A., Chen, H., Harris, C.L., Thoe, R.S., Thorn, D.B., Träbert, E., Gustavsson, M.G.H., Forssén, C., Mårtensson-Pendrill, A.M.: Hyperfine structure of hydrogenlike thallium isotopes. Phys. Rev. A 64, 032506 (2001)

    Article  ADS  Google Scholar 

  13. Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Towards a test of QED in investigations of the hyperfine splitting in heavy ions. Phys. Rev. Lett. 86, 3959 (2001)

    Article  ADS  Google Scholar 

  14. Hannen, V., Anielski, D., Geppert, C., Jöhren, R., Kühl, T., Lochmann, M., López-Coto, R., Nörtershäuser, W., Ortjohann, H.W., Sánchez, R., Vollbrecht, J., Weinheimer, C., Winters, D.F.A.: Detection system for forward emitted photons at the experimental storage ring at GSI. J. Instrum. 8(09), P09018 (2013)

    Article  Google Scholar 

  15. Lochmann, M., Jöhren, R., Geppert, C., Andelkovic, Z., Anielski, D., Botermann, B., Bussmann, M., Dax, A., Frömmgen, N., Hammen, M., Hannen, V., Kühl, T., Litvinov, Y.A., Lopez-Coto, R., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Volotka, A., Weinheimer, C., Wen, W., Will, E., Winters, D., Sanchez, R., Nörtershäuser, W.: Observation of the hyperfine transition in lithium-like bismuth 209Bi80+: towards a test of QED in strong magnetic fields. Phys. Rev. A 90(3), 030501 (2014)

    Article  ADS  Google Scholar 

  16. Ullmann, J., Andelkovic, Z., Brandau, C., Dax, A., Geithner, W., Geppert, C., Gorges, C., Hammen, M., Hannen, V., Kaufmann, S., König, K., Litvinov, Y., Lochmann, M., Maaß, B., Meisner, J., Murböck, T., Sánchez, R., Schmidt, M., Schmidt, S., Steck, M., Stöhlker, T., Thompson, R., Trageser, C., Vollbrecht, J., Weinheimer, C., Nörtershäuser, W.: High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017)

    Article  ADS  Google Scholar 

  17. Sánchez, R., Lochmann, M., Jöhren, R., Andelkovic, Z., Anielski, D., Botermann, B., Bussmann, M., Dax, A., Frömmgen, N., Geppert, C., Hammen, M., Hannen, V., Kühl, T., Litvinov, Y.A., López-Coto, R., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Wen, W., Weinheimer, C., Will, E., Winters, D., Nörtershäuser, W.: Laser spectroscopy measurement of the 2s -hyperfine splitting in lithium-like bismuth. J. Phys. B Atomic Mol. Phys. 50(8), 085004 (2017)

    Article  ADS  Google Scholar 

  18. Ullmann, J., Andelkovic, Z., Dax, A., Geithner, W., Geppert, C., Gorges, C., Hammen, M., Hannen, V., Kaufmann, S., König, K., Litvinov, Y., Lochmann, M., Maass, B., Meisner, J., Murböck, T., Sánchez, R., Schmidt, M., Schmidt, S., Steck, M., Stöhlker, T., Thompson, R.C., Vollbrecht, J., Weinheimer, C., Nörtershäuser, W.: An improved value for the hyperfine splitting of hydrogen-like 209Bi82+. J. Phys. B: At. Mol. Phys. 48(14), 144022 (2015)

    Article  ADS  Google Scholar 

  19. Raghavan, P.: Table of nuclear moments. At. Data Nucl. Data Tables 42(2), 189 (1989)

    Article  ADS  Google Scholar 

  20. Skripnikov, L.V., Schmidt, S., Ullmann, J., Geppert, C., Kraus, F., Kresse, B., Nörtershäuser, W., Privalov, A.F., Scheibe, B., Shabaev, V.M., Vogel, M., Volotka, A.V.: New nuclear magnetic moment of 209Bi: resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018)

    Article  ADS  Google Scholar 

  21. Sen’kov, R., Dmitriev, V.: Nuclear magnetization distribution and hyperfine splitting in Bi82+ ion. Nucl. Phys. A 706, 351 (2002)

    Article  ADS  Google Scholar 

  22. Volotka, A.V., Glazov, D.A., Andreev, O.V., Shabaev, V.M., Tupitsyn, I.I., Plunien, G.: Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108(7), 073001 (2012)

    Article  ADS  Google Scholar 

  23. Fedotov, M.A., Yukhin, Y.M., Shubin, A.A., Udalova, T.A., Neorg, Z.h.: Study of the structure of di-2-ethylhexylphosphate of tetrahydroxotetraoxohexabismuthate (III) by NMR 31P, 17O, 209?i method. Khim. 43, 307 (1998)

    Google Scholar 

  24. Naslund, J., Persson, I., Sandstrom, M.: Solvation of the Bismuth(III) ion by water, dimethyl sulfoxide, N,N’-Dimethylpropyleneurea, and N,N-Dimethylthioformamide. An EXAFS, large-angle X-ray scattering, and crystallographic structural study. Inorg. Chem. 39(18), 4012 (2000)

    Article  Google Scholar 

  25. Morgan, K., Sayer, B.G., Schrobilgen, G.J.: Bismuth NMR spectroscopy: 209Bi and 19F high-resolution NMR spectra of the hexafluorobismuthate(V) Ion. J. Magn. Reson. (1969) 52(1), 139 (1983)

    Article  Google Scholar 

  26. Kluge, H.J., Beier, T., Blaum, K., Dahl, L., Eliseev, S., Herfurth, F., Hofmann, B., Kester, O., Koszudowski, S., Kozhuharov, C., Maero, G., Nörtershäuser, W., Pfister, J., Quint, W., Ratzinger, U., Schempp, A., Schuch, R., Stöhlker, T., Thompson, R., Vogel, M., Vorobjev, G., Winters, D., Werth, G.: HITRAP: a facility at GSI for highly charged ions. Adv. Quantum Chem. 53, 83 (2008)

    Article  ADS  Google Scholar 

  27. von Lindenfels, D., Wiesel, M., Glazov, D.A., Volotka, A.V., Sokolov, M.M., Shabaev, V.M., Plunien, G., Quint, W., Birkl, G., Martin, A., Vogel, M.: Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a penning trap. Phys. Rev. A 87, 023412 (2013)

    Article  ADS  Google Scholar 

  28. Andelkovic, Z., Cazan, R., Nörtershäuser, W., Bharadia, S., Segal, D.M., Thompson, R.C., Jöhren, R., Vollbrecht, J., Hannen, V., Vogel, M.: Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions. Phys. Rev. A 87, 033423 (2013)

    Article  ADS  Google Scholar 

  29. Schmidt, S., Billowes, J., Bissell, M., Blaum, K., Ruiz, R.G., Heylen, H., Malbrunot-Ettenauer, S., Neyens, G., Nörtershäuser, W., Plunien, G., Sailer, S., Shabaev, V., Skripnikov, L., Tupitsyn, I., Volotka, A., Yang, X.: The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED. Phys. Lett. B 779, 324 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the German Ministry for Education and Research under grants 05P15RDFAA, 05P12PMFAE, 05P15PMFAA 06GI947 and 05P12R6FAN, the Helmholtz-Association under contract HGF-IVF-HCJRG-108 and the Helmholtz International Centre for FAIR (HIC for FAIR) within the LOEWE program by the federal state Hesse. M.L., C.T. and J.U. acknowledge support from HGS-HiRe. Calculations were funded by the Foundation for the advancement of theoretical physics and mathematics “BASIS” grant according to the research project No. 18-1-3-55-1 and also by the President of Russian Federation Grant No. MK-2230.2018.2. This work was also supported by SPSU (Grants No. 11.38.237.2015) and by SPSU-DFG (Grants No. 11.65.41.2017 and No. STO 346/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Nörtershäuser.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nörtershäuser, W., Ullmann, J., Skripnikov, L.V. et al. The hyperfine puzzle of strong-field bound-state QED. Hyperfine Interact 240, 51 (2019). https://doi.org/10.1007/s10751-019-1569-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1569-8

Keywords

Navigation