Skip to main content
Log in

Quadrupole moments of 29Mg and 33Mg

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The quadrupole moments of 29Mg and 33Mg have been constrained by collinear laser spectroscopy at CERN-ISOLDE. The values are consistent with shell-model predictions, thus supporting the current understanding of light nuclei associated with the “island of inversion”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thibault, C., et al.: . J. Phys. Rev. C 12, 644 (1975). https://doi.org/10.1103/PhysRevC.12.644

    Article  ADS  Google Scholar 

  2. Huber, G., et al.: . J. Phys. Rev. C 18, 2342 (1978). https://doi.org/10.1103/PhysRevC.18.2342

    Article  ADS  Google Scholar 

  3. Détraz, C., et al.: . J. Phys. Rev. C 19, 164 (1979). https://doi.org/10.1103/PhysRevC.19.164

    Article  ADS  Google Scholar 

  4. Neyens, G., Kowalska, M., Yordanov, D.., et al.: . J. Phys. Rev. Lett. 94, 022501 (2005). https://doi.org/10.1103/PhysRevLett.94.022501 https://doi.org/10.1103/PhysRevLett.94.022501

    Article  ADS  Google Scholar 

  5. Kowalska, M., Yordanov, D.T., et al.: . J. Phys. Rev. C 77, 034307 (2008). https://doi.org/10.1103/PhysRevC.77.034307 https://doi.org/10.1103/PhysRevC.77.034307

    Article  ADS  Google Scholar 

  6. Yordanov, D.T., et al.: . J. Phys. Rev. Lett. 99, 212501 (2007). https://doi.org/10.1103/PhysRevLett.99.212501 https://doi.org/10.1103/PhysRevLett.99.212501

    Article  ADS  Google Scholar 

  7. Yordanov, D.T., et al.: . J. Phys. Rev. Lett. 108, 042504 (2012). https://doi.org/10.1103/PhysRevLett.108.042504 https://doi.org/10.1103/PhysRevLett.108.042504

    Article  ADS  Google Scholar 

  8. Tripathi, V., et al.: . J. Phys. Rev. Lett. 101, 142504 (2008). https://doi.org/10.1103/PhysRevLett.101.142504 https://doi.org/10.1103/PhysRevLett.101.142504

    Article  ADS  Google Scholar 

  9. Yordanov, D.T., et al.: . J. Phys. Rev. Lett. 104, 129201 (2010). https://doi.org/10.1103/PhysRevLett.104.129201 https://doi.org/10.1103/PhysRevLett.104.129201

    Article  ADS  Google Scholar 

  10. Kanungo, R., et al.: . J. Phys. Lett. B 685, 253 (2010). https://doi.org/10.1016/j.physletb.2010.02.008

    Article  ADS  Google Scholar 

  11. Neyens, G.: . J. Phys. Rev. C 84, 064310 (2011). https://doi.org/10.1103/PhysRevC.84.064310

    Article  ADS  Google Scholar 

  12. Kaufman, V., Martin, W.C.: . J. Phys. Chem. Ref. Data 20, 83 (1991). https://doi.org/10.1063/1.555879

    Article  ADS  Google Scholar 

  13. Keim, M., et al.: . J. Eur. Phys. J. A 8, 31 (2000). https://doi.org/10.1007/s100500070117

    Article  ADS  Google Scholar 

  14. Yordanov, D.T., et al.: . J. Phys. G 44, 075104 (2017). https://doi.org/10.1088/1361-6471/aa718b

    Article  ADS  Google Scholar 

  15. Itano, W.M., Wineland, D.J.: . J. Phys. Rev. A 24, 1364 (1981). https://doi.org/10.1103/PhysRevA.24.1364

    Article  ADS  Google Scholar 

  16. Sundholm, D., Olsen, J.: . J. Nucl. Phys. A534, 360 (1991). https://doi.org/10.1016/0375-9474(91)90505-Z https://doi.org/10.1016/0375-9474(91)90505-Z

    Article  ADS  Google Scholar 

  17. Brown, B.A., Richter, W.A.: . J. Phys. Rev. C 74, 034315 (2006). https://doi.org/10.1103/PhysRevC.74.034315 https://doi.org/10.1103/PhysRevC.74.034315

    Article  ADS  Google Scholar 

  18. Brown, B.A., Rae, W.: . J. Nucl. Data Sheets 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022

    Article  ADS  Google Scholar 

  19. Brown, B.A., et al.: MSU - NSCL report 1289 (2004)

  20. Nummela, S., et al.: . J. Phys. Rev. C 63, 044316 (2001). https://doi.org/10.1103/PhysRevC.63.044316

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the German Federal Ministry for Education and Research under contract no. 06MZ175 and 06MZ215, the Helmholtz Association (VH-NG-037), the P6-EURONS (RII3-CT-2004-506065), the IUAP project P5/07 of OSCT Belgium, the FWO-Vlaanderen and the Marie Curie IEF program (MEIF-CT-2006-042114). We thank the ISOLDE technical group for their professional assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyan Todorov Yordanov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10–15 February 2019

Edited by S. N. Mishra, P. L. Paulose and R. Palit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yordanov, D.T., Kowalska, M., Blaum, K. et al. Quadrupole moments of 29Mg and 33Mg. Hyperfine Interact 240, 67 (2019). https://doi.org/10.1007/s10751-019-1609-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1609-4

Keywords

Navigation