Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 3389 Accesses

Abstract

Hyperfine structure in atomic and molecular spectra is a result of the interaction between electronic degrees of freedom and nuclear properties other than the dominant one, the nuclear Coulomb field. It includes splittings of energy levels (and thus of spectral lines) from magnetic dipole and electric quadrupole interactions (and higher multipoles, on occasion). Isotope shifts are experimentally entangled with hyperfine structure, and the so-called field effect in the isotope shift can be naturally included as part of hyperfine structure. Studies of hyperfine structure can be used to probe nuclear properties, but they are an equally important probe of the structure of atomic systems, providing especially good tests of atomic wave functions near the nucleus. There are also isotope shifts owing to the mass differences between different nuclear species, and the study of these shifts provides useful atomic information, especially about correlations between electrons.

Hyperfine effects are usually small and often, but not always, it is sufficient to consider only diagonal matrix elements for the atomic or molecular system and for the nuclear system. In some cases, however, matrix elements off-diagonal in the atomic space, even though small, can be of importance; one possible result is to cause admixtures sufficient to make normally forbidden transitions possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Casimir, H.B.G.: On the Interaction Between Atomic Nuclei and Electrons. Teyler's Tweede Genootschap, Haarlem (1963)

    MATH  Google Scholar 

  • Casimir, H.B.G.: On the Interaction Between Atomic Nuclei and Electrons. Freeman, San Francisco (1936)

    MATH  Google Scholar 

  • Pauling, L., Goudsmit, S.: The Structure of Line Spectra. McGraw-Hill, New York (1930)

    MATH  Google Scholar 

  • Herzberg, G.: Atomic Spectra and Atomic Structure, 2nd edn. Dover, New York (1944)

    Google Scholar 

  • Herzberg, G.: Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules, 2nd edn. Van Nostrand, Princeton (1950)

    Google Scholar 

  • Kopfermann, H.: Nuclear Moments. Academic Press, New York (1958)

    Google Scholar 

  • Ramsey, N.F.: Molecular Beams. Clarendon, Oxford (1956)

    Google Scholar 

  • Slater, J.C.: Quantum Theory of Atomic Structure vol. II. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  • Sobelman, I.I.: Introduction to the Theory of Atomic Spectra. Pergamon, London (1972)

    Google Scholar 

  • Kuhn, H.G.: Atomic Spectra, 2nd edn. Academic Press, New York (1969)

    Google Scholar 

  • Corney, A.: Atomic and Laser Spectroscopy. Clarendon, Oxford (1977)

    Google Scholar 

  • Weissbluth, M.: Atoms and Molecules. Academic Press, New York (1978)

    Google Scholar 

  • Sobelman, I.I.: Atomic Spectra and Radiative Transitions. Springer, Berlin, Heidelberg (1979)

    Google Scholar 

  • Haken, H., Wolf, H.C.: Atomic and Quantum Physics. Springer, Berlin, Heidelberg (1984)

    Google Scholar 

  • Armstrong Jr., L.: Theory of the Hyperfine Structure of Free Atoms. Wiley, New York (1971)

    Google Scholar 

  • King, W.H.: Isotope Shifts in Atomic Spectra. Plenum, New York (1984)

    Google Scholar 

  • Lindgren, I., Morrison, J.: Atomic Many-Body Theory. Springer, Berlin, Heidelberg (1982)

    Google Scholar 

  • Bauche, J., Champeau, R.-J.: Recent progress in the theory of atomic isotope shift. Adv. At. Mol. Opt. Phys. 12, 39 (1976)

    Google Scholar 

  • Heilig, K., Steudel, A.: New developments of classical optical spectroscopy. In: Hanle, W., Kleinpoppen, H. (eds.) Progress in Atomic Spectroscopy, Part A, pp. 263–328. Plenum, New York (1978)

    Google Scholar 

  • Hughes, V.W., Bederson, B., Cohen, V.W., Pichanik, F.M.J. (eds.): Atomic Physics. Plenum, New York (1969). articles by H. M. Foley, pp. 509–522, and H. H. Stroke, pp. 523–550

    Google Scholar 

  • Zorn, J.C., Lewis, R.R., Weiss, M.K. (eds.): Atomic Physics. AIP Conf. Proc., vol. 233. American Institute of Physics, New York (1991)

    Google Scholar 

  • Walther, H., Hänsch, T.W., Neizert, B.: Atomic Physics. AIP Conf. Proc., vol. 275. American Institute of Physics, New York (1993)

    Google Scholar 

  • Hüfner, J., Scheck, F., Wu, C.S.: Muonic atoms. In: Hugh, V.W., Wu, C.S. (eds.) Muon Physics, pp. 201–307. (1977)

    Google Scholar 

  • Barrett, R.C.: Numerical evaluation of muonic-atom energy levels. In: Hugh, V.W., Wu, C.S. (eds.) Muon Physics, pp. 309–322. (1977)

    Google Scholar 

  • Barrett, R.C., Jackson, D.: Nuclear Sizes and Structure. Oxford Univ. Press, Oxford (1977)

    Google Scholar 

  • Pachucki, K.: Hyperfine structure of muonic helium. Phys. Rev. A 63, 032508 (2001)

    ADS  Google Scholar 

  • Backenstoss, G.: Pionic atoms. Ann. Rev. Nucl. Sci. 20, 467 (1970)

    ADS  Google Scholar 

  • Konijn, J.: An improved parametrization of the optical potential for pionic atoms. In: Oset, E., Vicente Vacas, M.J., Garcia Recio, C. (eds.) Pions in Nuclei, p. 303. World Scientific, Singapore (1992)

    Google Scholar 

  • Batty, C.J.: Light kaonic and antiprotonic atoms. Nucl. Phys. A 508, 89C (1990)

    ADS  Google Scholar 

  • Backenstoss, G.: Antiprotonic atoms. Comtemp. Phys. 30, 433 (1989)

    ADS  Google Scholar 

  • Korobov, V.I., Bakalov, D.: Fine and hyperfine structure of the (37, 35) state of the 4He+ p atom. J. Phys. B 34, L519 (2001)

    ADS  Google Scholar 

  • Raghavan, P.: Table of nuclear moments. At. Data Nucl. Data Tables 42, 189 (1989)

    ADS  Google Scholar 

  • Martin, M.J., Tuli, J.K. (eds.): Nuclear Data Sheets vol. 74–76. Academic Press, New York (1995). Each issue contains a guide to the most recent compilation for each atomic mass number

    Google Scholar 

  • Lederer, C.M., Shirley, V.S.: Table of Isotopes, 7th edn. Wiley, New York (1978)

    Google Scholar 

  • Brink, D.M., Satchler, G.R.: Angular Momentum, 2nd edn. Clarendon Press, Oxford (1968)

    MATH  Google Scholar 

  • Schwartz, C.: Theory of hyperfine structure. Phys. Rev. 97, 380 (1955)

    ADS  MATH  Google Scholar 

  • Hughes, D.S., Eckart, C.: The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694 (1930)

    ADS  MATH  Google Scholar 

  • Drake, G.W.F., Yan, Z.-C.: Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis. Phys. Rev. A 46, 2378 (1992)

    ADS  Google Scholar 

  • Stone, A.P.: Nuclear and relativistic effects in atomic spectra. Proc. Phys. Soc. 77, 786 (1961)

    ADS  Google Scholar 

  • Stone, A.P.: Nuclear and relativistic effects in atomic spectra: II. Proc. Phys. Soc. 81, 868 (1963)

    ADS  Google Scholar 

  • Zhao, P., Lawall, J.R., Pipkin, F.M.: High-precision isotope-shift measurement of 23S-23P transition in helium. Phys. Rev. Lett. 66, 592 (1991)

    ADS  Google Scholar 

  • Shiner, D., Dixson, R., Vedantham, V.: Three-nucleon charge radius: A precise laser determination using 3He. Phys. Rev. Lett. 74, 3553 (1995)

    ADS  Google Scholar 

  • Marin, F., Minardi, F., Pavone, F.S., Drake, G.W.F.: Hyperfine structure of the 33P state of 3He and isotope shift for the 23S-33P0 transition. Z. Phys. D 32, 285 (1995)

    ADS  Google Scholar 

  • Drake, G.W.F.: High-precision calculations for the Rydberg states of helium. In: Levin, F.S., Micha, D.A. (eds.) Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, pp. 196–199. Plenum, New York (1993). For isotope shifts in Li+, see also Riis et al. (1994)

    Google Scholar 

  • Pachucki, K., Yerokhin, V.A., Cancio-Pastor, P.: Quantum electrodynamic calculation of the hyperfine structure of 3He. Phys. Rev. A 85, 042517 (2012)

    ADS  Google Scholar 

  • Villemoes, P., Wang, M., Arnesen, A., Weiler, C., Wännström, A.: Isotope shifts and hyperfine structure of optical transitions in 147−150,152,154Sm II by fast-ion-beam–laser spectroscopy. Phys. Rev. A 51, 2838 (1995)

    ADS  Google Scholar 

  • Seltzer, E.C.: KX-Ray isotope shifts. Phys. Rev. 188, 1916 (1969)

    ADS  Google Scholar 

  • Fricke, G., Bernhardt, C., Heilig, K., Schaller, L.A., Schellenberg, L., Shera, E.B., Dejager, C.W.: Nuclear ground state charge radii from electromagnetic interactions. At. Data Nucl. Data Tables 60, 177 (1995)

    ADS  Google Scholar 

  • Aufmuth, P., Heilig, K., Steudel, A.: Changes in mean-square nuclear charge radii from optical isotope shifts. At. Data Nucl. Data Tables 37, 455 (1987)

    ADS  Google Scholar 

  • Blundell, S.A., Baird, P.E.G., Palmer, C.W.P., Stacey, D.N., Woodgate, G.K.: A reformulation of the theory of field isotope shift in atoms. J. Phys. B 20, 3663 (1987)

    ADS  Google Scholar 

  • King, W.H.: Comments on the article “Peculiarities of the isotope shift in the samarium spectrum”. J. Opt. Soc. Am. 53, 638 (1963)

    Google Scholar 

  • Pyykkö, P.: The nuclear quadrupole moments of the 20 first elements: High-precision calculations on atoms and small molecules. Z. Naturforsch. A 47, 189 (1992)

    ADS  Google Scholar 

  • Casten, R.F.: Nuclear Structure from a Simple Perspective. Oxford University Press, Oxford, pp 296–300 (1990)

    Google Scholar 

  • Dankwort, W., Ferch, J., Gebauer, H.: Hexadecapole interaction in the atomic ground state of 165Ho. Z. Phys. 267, 229 (1974)

    ADS  Google Scholar 

  • Becker, O., Enders, K., Werth, G., Dembczynski, J.: Hyperfine-structure measurements of the 151,153Eu+ ground state. Phys. Rev. A 48, 3546 (1993)

    ADS  Google Scholar 

  • Castel, B., Towner, I.S.: Modern Theories of Nuclear Moments. Clarendon, Oxford (1990)

    Google Scholar 

  • Yamazaki, T., Nomura, T., Nagamiya, S., Katou, T.: Anomalous orbital magnetism of proton deduced from the magnetic moment of the11 state of 210Po. Phys. Rev. Lett. 25, 547 (1970)

    ADS  Google Scholar 

  • Pachucki, K.: Hyperfine splitting of 2 3S1 state in He3. J. Phys. B 34, 3357 (2001)

    ADS  Google Scholar 

  • Pachucki, K.: Lithium hyperfine splitting. Phys. Rev. A 66, 062501 (2002)

    ADS  Google Scholar 

  • Jaccarino, V., King, J.G., Satten, R.A., Stroke, H.H.: Hyperfine structure of I127. Nuclear magnetic octupole moment. Phys. Rev. 94, 1798 (1954)

    ADS  Google Scholar 

  • Kusch, P., Eck, T.G.: Hyperfine structure of In115. Evidence of a nuclear octupole moment. Phys. Rev. 94, 1799 (1954)

    ADS  Google Scholar 

  • Mizushima, M.: Quantum Mechanics of Atomic Spectra and Atomic Structure. Benjamin, New York (1970). Sect. 9–10

    Google Scholar 

  • Childs, W.J.: M1, E2, and M3 hyperfine structure and nuclear moment ratios for 151,153Eu. Phys. Rev. A 44, 1523 (1991)

    ADS  Google Scholar 

  • Bitter, F.: Nuclear magnetic moments and hyperfine structure of the rubidium isotopes. Phys. Rev. 76, 150 (1949)

    ADS  Google Scholar 

  • Bohr, A., Weisskopf, V.F.: The influence of nuclear structure on the hyperfine structure of heavy elements. Phys. Rev. 77, 94 (1950)

    ADS  MATH  Google Scholar 

  • Büttgenbach, S.: Magnetic hyperfine anomalies. Hyperfine Interact. 20, 1 (1984)

    ADS  Google Scholar 

  • Savard, G., Werth, G.: Precision nuclear measurements with ion traps. Ann. Rev. Nucl. Part. Sci. 50, 119 (2000)

    ADS  Google Scholar 

  • Sorensen, R.A.: Classical derivation of the magnetic hyperfine anomaly. Am. J. Phys. 35, 1078 (1967)

    ADS  Google Scholar 

  • Iimura, H., Koizumi, M., Miyabe, M., Oba, M., Shibata, T., Shinohara, N., Ishida, Y., Horiguchi, T., Schuessler, H.A.: Nuclear moments and isotope shifts of 135La, 137La, and 138La by collinear laser spectroscopy. Phys. Rev. C 68, 054328 (2003)

    ADS  Google Scholar 

  • Beiersdorfer, P., Crespo López-Urrutia, J.R., Utter, S.B., Träbert, E., Gustavsson, M.G.H., Forssén, C., Mårtensson-Pendrill, A.-M.: Hyperfine structure of heavy hydrogen-like ions. Nucl. Instrum. Methods. Phys. Res. B. 205, 62 (2003)

    ADS  Google Scholar 

  • Riis, E., Sinclair, A.G., Paulsen, O., Drake, G.W.F., Rowley, W.R.C., Levick, A.P.: Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment. Phys. Rev. A 49, 207 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy T. Emery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Emery, G.T. (2023). Hyperfine Structure. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_17

Download citation

Publish with us

Policies and ethics