Skip to main content
Log in

A non-perturbative study of the evolution of cosmic magnetised sources

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We undertake a hydrodynamical study of a mixture of tightly coupled primordial radiation, neutrinos, baryons, electrons and positrons, together with a gas of already decoupled dark matter WIMPS and an already existing “frozen” magnetic field in the infinite conductivity regime. Considering this cosmic fluid as the source of a homogeneous but anisotropic Bianchi I model, we describe its interaction with the magnetic field by means of suitable equations of state that are appropriate for the particle species of the mixture between the end of the leptonic era and the beginning of the radiation-dominated epoch. Fulfilment of observational bounds on the magnetic field intensity yields a “near FLRW” (but strictly non-perturbative) evolution of the geometric, kinematic and thermodynamical variables. This evolution is roughly comparable to the weak field approximation in linear perturbations on a spatially flat FLRW background of sources in which the frozen magnetic fields are coherent over very large supra-horizon scales. Our approach and results may provide interesting guidelines in potential situations in which non-perturbative methods are required to study the interaction between magnetic fields and the cosmic fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We remark that Bianchi I models have received renewed attention [6369], since present observational bounds from Planck and WMAP cannot rule out (in principle) the possibility that the large scale structure of the Universe is not perfectly isotropic from a statistical point of view.

  2. Unless specified otherwise, we use natural units \(G=c=1\).

  3. Assuming a present day value \(\varOmega _0^\varLambda \sim 0.7\) for a \(\varLambda \)CDM background, the contribution of the cosmological constant is absolutely negligible in the cosmic times under consideration, hence we omit it until we discuss the late evolution of the models in Sect. 6.3.

  4. See definitions in [72]. The term \(\varOmega ^{k}_{\text { QFT }}\) has non-field-dependent ultraviolet divergencies, after renormalisation the Schwinger expression is obtained [86].

  5. The critical magnetic field for an electron as defined above is the strength at which electron cyclotron energy equals its rest energy.

References

  1. Wielebinski, R.: Magnetic fields in the milky way, derived from radio continuum observations and Faraday rotation studies. In: Wielebinski, R., Beck, R. (eds.) Cosmic Magnetic Fields. Lecture Notes in Physics, vol. 664, p. 89. Springer, Berlin (2005)

    Chapter  Google Scholar 

  2. Kronberg, P.P.: Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  3. Beck, R.: Space Sci. Rev. 166, 215 (2012)

    Article  ADS  Google Scholar 

  4. Kronberg, P.P., Perry, J.J., Zukowski, E.L.H.: Appl. J. 387, 528 (1992)

    Google Scholar 

  5. Bernet, M.L., Miniati, F., Lilly, S.J., Kronberg, P.P., Dessauges-Zavadsky, M.: Nature 454, 302 (2008)

    Article  ADS  Google Scholar 

  6. Wolfe, A.M., Jorgenson, R.A., Robishaw, T., Heiles, C., Prochaska, J.X.: Nature 455, 638 (2008)

    Article  ADS  Google Scholar 

  7. Clarke, T.E., Kronberg, P.P., Boehringer, H.: Astrophys. J. 547, L111 (2001)

    Article  ADS  Google Scholar 

  8. Carilli, C.L., Taylor, G.B.: Ann. Rev. Astron. Astrophys. 40, 319 (2002)

    Article  ADS  Google Scholar 

  9. Vogt, C., Ensslin, T.A.: Astron. Astrophys. 434, 67 (2005)

    Article  ADS  Google Scholar 

  10. Bonafede, A., Feretti, L., Murgia, M., Govoni, F., Giovannini, G., Dallacasa, D., Dolag, K., Taylor, G.B.: Astron. Astrophys. 513, A30 (2010)

    Article  ADS  Google Scholar 

  11. Kim, E.J., Kronberg, P.P., Giovannini, G., Venturi, T.: Nature 341, 720–723 (1989)

    Article  ADS  Google Scholar 

  12. Xu, Y., Kronberg, P.P., Habib, S., Dufton, Q.W.: Astrophys. J. 637, 19 (2006)

    Article  ADS  Google Scholar 

  13. Kronberg, P.P.: Rep. Prog. Phys. 57, 325 (1994)

    Article  ADS  Google Scholar 

  14. Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: Ann. Rev. Astron. Astrophys. 34, 155 (1996)

    Article  ADS  Google Scholar 

  15. Govoni, F., Feretti, L.: Int. J. Mod. Phys. D 13, 1549 (2004)

    Article  ADS  MATH  Google Scholar 

  16. Neronov, A., Vovk, I.: Science 328, 73 (2010)

    Article  ADS  Google Scholar 

  17. Tavecchio, F., Ghisellini, G., Foschini, L., Bonnoli, G., Ghirlanda, G., Coppi, P.: Mon. Not. R. Astron. Soc. 406, L70 (2010)

    ADS  Google Scholar 

  18. Dolag, K., Kachelriess, M., Ostapchenko, S., Tomas, R.: Astrophys. J. 727, L4 (2011)

    Article  ADS  Google Scholar 

  19. Grasso, D., Rubinstein, H.R.: Phys. Rep. 348, 163 (2001)

    Article  ADS  Google Scholar 

  20. Kandus, A., Kunze, K.E., Tsagas, C.G.: Phys. Rep. 505, 1 (2011)

    Article  ADS  Google Scholar 

  21. Widrow, L.M., Ryu, D., Schleicher, D.R.G., Subramanian, K., Tsagas, C.G., Treumann, R.A.: Space Sci. Rev. 166, 37 (2012)

    Article  ADS  Google Scholar 

  22. Durrer, R., Neronov, A.: Astron. Astrophys. Rev. 21, 62 (2013)

    Article  ADS  Google Scholar 

  23. Martin, J., Yokoyama, J.: JCAP 1, 25 (2008)

    Article  ADS  MATH  Google Scholar 

  24. Subramanian, K.: Astron. Nachr. 331, 110 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Caprini, C., Sorbo, L.: JCAP 1410, 056 (2014)

    Article  ADS  Google Scholar 

  26. Barrow, J.D., Tsagas, C.G.: Phys. Rev. D 77, 107302 (2008)

    Article  ADS  Google Scholar 

  27. Field, G.B., Carroll, S.M.: Phys. Rev. D 62, 103008 (2000)

    Article  ADS  Google Scholar 

  28. Banerjee, R., Jedamzik, K.: Phys. Rev. D 70, 123003 (2004)

    Article  ADS  Google Scholar 

  29. Arnold, P., Moore, G.D.: Phys. Rev. D 73, 025006 (2006)

    Article  ADS  Google Scholar 

  30. Arnold, P., Moore, G.D.: Phys. Rev. D 73, 025013 (2006)

    Article  ADS  Google Scholar 

  31. Arnold, P.: Int. J. Mod. Phys. E 16, 2555 (2007)

    Article  ADS  Google Scholar 

  32. Arnold, P., Moore, G.D.: Phys. Rev. D 76, 045009 (2007)

    Article  ADS  Google Scholar 

  33. Arnold, P., Leang, P.S.: Phys. Rev. D 76, 065012 (2007)

    Article  ADS  Google Scholar 

  34. Ichiki, K., Takahashi, K., Ohno, H., Hanayama, H., Sugiyama, N.: Science 311, 827 (2006)

    Article  ADS  Google Scholar 

  35. Saga, S., Ichiki, K., Takahashi, K., Sugiyama, N.: Phys. Rev. D 91, 123510 (2015)

    Article  ADS  Google Scholar 

  36. Sanchez, A., Ayala, A., Piccinelli, G.: Phys. Rev. D 75, 043004 (2007)

    Article  ADS  Google Scholar 

  37. Navarro, J., Sanchez, A., Tejeda-Yeomans, M.E., Ayala, A., Piccinelli, G.: Phys. Rev. D 82, 123007 (2010)

    Article  ADS  Google Scholar 

  38. Piccinelli, G., Sanchez, A., Ayala, A., Mizher, A.J.: Phys. Rev. D 90(8), 083504 (2014)

    Article  ADS  Google Scholar 

  39. Tsagas, C.G., Challinor, A., Maartens, R.: Phys. Rep. 465, 61 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. Barrow, J.D., Maartens, R., Tsagas, C.G.: Phys. Rep. 449, 131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Tsagas, C., Maartens, R.: Phys. Rev. D 61, 083519 (2000)

    Article  ADS  Google Scholar 

  42. Tsagas, C.G., Maartens, R.: Class. Quantum Gravit. 17, 2215 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Clarkson, C.A., Coley, A.A., Maartens, R., Tsagas, C.G.: Class. Quantum Gravit. 20, 1519 (2003)

    Article  ADS  MATH  Google Scholar 

  44. Tsagas, C.G., Barrow, J.D.: Class. Quantum Gravit. 14, 2539 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Tsagas, C.G., Barrow, J.D.: Class. Quantum Gravit. 15, 3523 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Tsagas, C.G., Maartens, R.: Phys. Rev. D 61, 083519 (2000)

    Article  ADS  Google Scholar 

  47. Zunckel, C., Betschart, G., Dunsby, P.K.S., Marklund, M.: Phys. Rev. D 73, 103509 (2006)

    Article  ADS  Google Scholar 

  48. Mongwane, B., Dunsby, P.K.S., Osano, B.: Phys. Rev. D 86, 083533 (2012)

    Article  ADS  Google Scholar 

  49. Grasso, D., Rubinstein, H.R.: Astropart. Phys. 3, 95 (1995)

    Article  ADS  Google Scholar 

  50. Grasso, D., Rubinstein, H.R.: Phys. Lett. B 379, 73 (1996)

    Article  ADS  Google Scholar 

  51. Kawasaki, M., Kusakabe, M.: Phys. Rev. D 86, 063003 (2012)

    Article  ADS  Google Scholar 

  52. Hortua, H.J., Castañeda, L., Tejeiro, J.M.: Phys. Rev. D 87, 103531 (2013)

    Article  ADS  Google Scholar 

  53. Zeldovich, Y.B.: Zh. Eksp. Teor. Fiz. 48, 986 (1964) (English translation in JETP, 21, 656 (1965))

  54. Thorne, K.S.: Astrophys. J. 148, 51 (1967)

    Article  ADS  Google Scholar 

  55. LeBlanc, V.G.: Class. Quantum Gravit. 15, 1607 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. LeBlanc, V.G., Kerr, D., Wainwright, J.: Class. Quantum Gravit. 12, 513 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Horwood, J.T., Wainwright, J.: Gen. Relativ. Gravit. 36, 799 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Singh Kohli, I., Haslam, M.C.: Phys. Rev. D 88, 063518 (2013)

    Article  ADS  Google Scholar 

  59. LeBlanc, V.G.: Class. Quantum Gravit. 14, 2281 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Jacobs, K.C.: Astrophys. J. 155, 379 (1969)

    Article  ADS  Google Scholar 

  61. King, E.J., Coles, P.: Class. Quantum Gravit. 24, 2061 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Adamek, J., Durrer, R., Fenu, E., Vonlanthen, M.: JCAP 06, 017 (2011)

    Article  ADS  Google Scholar 

  63. Harko, T., Lobo, F.S.N., Mak, M.K.: Galaxies 2, 496 (2014)

    Article  ADS  Google Scholar 

  64. Fleury, P., Pitrou, C., Uzan, J.P.: Phys. Rev. D 91(4), 043511 (2015)

    Article  ADS  Google Scholar 

  65. Schucker, T., Tilquin, A., Valent, G.: Mon. Not. R. Astron. Soc. 444(3), 2820 (2014)

    Article  ADS  Google Scholar 

  66. Ade, P.A.R., et al.; Planck Collaboration: Astron. Astrophys. 571, A1 (2014)

  67. Ade, P.A.R., et al.; Planck Collaboration: Astron. Astrophys. 571, A15 (2014)

  68. Ade, P.A.R., et al.; Planck Collaboration: Astron. Astrophys. 571, A16 (2014)

  69. Komatsu, E., et al.; WMAP Collaboration: Astrophys. J. Suppl. 192, 18 (2011)

  70. Chaichian, M., Masood, S.S., Montonen, C., Perez Martinez, A., Perez Rojas, H.: Phys. Rev. Lett. 84, 5261 (2000)

    Article  ADS  Google Scholar 

  71. Martínez, A.P., Rojas, H.P., Mosquera Cuesta, H.J.: Eur. Phys. J. C 29, 111 (2003)

    Article  ADS  Google Scholar 

  72. Ferrer, E.J., de la Incera, V., Keith, J.P., et al.: Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  73. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields Addison-Wesley. Reading Mass. and Pergamon, London (1971)

    Google Scholar 

  74. Ulacia Rey, A., Perez Martinez, A., Sussman, R .A.: Gen. Relativ. Gravit. 40, 1499 (2008)

    Article  ADS  MATH  Google Scholar 

  75. Ulacia Rey, A., Perez Martinez, A., Sussman, R .A.: Int. J. Mod. Phys. D 16, 481 (2007)

    Article  ADS  MATH  Google Scholar 

  76. Manreza Paret, D., Perez Martinez, A., Ulacia Rey, A., Sussman, R .A.: JCAP 1003, 017 (2010)

    Article  ADS  Google Scholar 

  77. Delgado Gaspar, I., Perez Martinez, A., Sussman, R .A., Ulacia Rey, A.: Eur. J. Phys. C 2502, 73 (2013)

    Google Scholar 

  78. Barrow, J.D.: Phys. Rev. D 55, 7451 (1997)

    Article  ADS  Google Scholar 

  79. Barrow, J.D., Ferreira, P.G., Silk, J.: Phys. Rev. Lett. 78, 3610 (1997)

    Article  ADS  Google Scholar 

  80. Parker, E.N.: Cosmological Magnetic Field. Oxford, Clarendon (1979)

    Google Scholar 

  81. Mestel, L.: Stellar Magnetism. Oxford University Press, Oxford (1999)

    Google Scholar 

  82. Chiu, H.Y., Canuto, V., Fassio-Canuto, L.: Phys. Rev. 176, 1438 (1968)

    Article  ADS  Google Scholar 

  83. Canuto, V., Chiu, H.Y.: Phys. Rev. 173, 1229 (1968)

    Article  ADS  Google Scholar 

  84. Canuto, V., Chiu, H.Y.: Phys. Rev. 173, 1220 (1968)

    Article  ADS  Google Scholar 

  85. Canuto, V., Chiu, H.Y.: Phys. Rev. 173, 1210 (1968)

    Article  ADS  Google Scholar 

  86. Schwinger, J.: Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Greenstein, G.: Nature 223, 938 (1969)

    Article  ADS  Google Scholar 

  88. Weinberg, S.: Cosmology. Oxford University Press Inc, New York (2008)

    MATH  Google Scholar 

  89. James, Rich: Fundamentals of Cosmology. Springer, Berlin (2009)

    Google Scholar 

  90. Kernan, P.J., Starkman, G.D., Vachaspati, T.: Phys. Rev. D 54, 7207 (1996)

    Article  ADS  Google Scholar 

  91. Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgments

The work of A.P.M and I.D.G has been supported by Ministerio de Ciencia, Tecnología y Medio Ambiente under the Grant CB0407 and by the ICTP Office of External Activities through NET-35. A.P.M. also acknowledges the hospitality and support given by the International Center for Relativistic Astrophysics Network where part of this paper was developed. G.P. aknowledges support from an UNAM-DGAPA-PASPA Grant and the hospitality from Instituto de Cibernética, Matemática y Física, La Habana, Cuba and from Depto. de Física Teórica y del Cosmos, Facultad de Ciencias, Universidad de Granada, Spain where this work was conceived and developed. R.A.S. and I.D.G. acknowledge support from the Research Grants DGAPA PAPIIT IA101414 and SEP–CONACYT 239639. G.P., A.P.M. and I.D.G. have also received support from UNAM–DGAPA–PAPIIT under Grants Nos. IN117111 and IN117914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Delgado Gaspar.

Appendices

Appendix 1: Local kinematic variables

The kinematics of local fluid elements can be described through covariant objects defined by the 4-velocity field \(u^\alpha \). For a Kasner metric in the comoving frame endowed with a normal geodesic 4-velocity, the only non-vanishing kinematic parameters are the expansion scalar, \(\theta \), and the shear tensor \(\sigma _{\alpha \beta }\):

$$\begin{aligned} \theta =u^{\alpha }\,_{;\alpha },\quad \sigma _{\alpha \beta }=u_{(\alpha ;\beta )}-\frac{\theta }{3}h_{\alpha \beta }, \end{aligned}$$
(49)

where \(h_{\alpha \beta }=u_{\alpha }u_{\beta }+g_{\alpha \beta }\) is the projection tensor and rounded brackets denote symmetrization. For the Kasner metric these parameters take the form:

$$\begin{aligned}&\theta =\frac{\dot{a}_{1}}{a_{1}}+\frac{\dot{a}_{2}}{a_{2}}+\frac{\dot{a}_{3}}{a_{3}}, \end{aligned}$$
(50)
$$\begin{aligned}&\sigma ^{\,\,\alpha }_{\beta }=\hbox {diag}\,\left[ \sigma ^{\,\,x}_{x},\sigma ^{\,\,y}_{y},\sigma ^{\,\,z}_{z},0\right] =\hbox {diag}\,\left[ \varSigma _{1},\varSigma _{2},\varSigma _{3},0\right] , \end{aligned}$$
(51)

where:

$$\begin{aligned} \varSigma _{\mathrm{a}}= & {} \frac{2}{3}\frac{\dot{a}_{\mathrm{a}}}{a_{\mathrm{a}}}-\frac{1}{3}\frac{\dot{a}_{\mathrm{b}}}{a_{\mathrm{b}}}- \frac{1}{3}\frac{\dot{a}_{\mathrm{c}}}{a_{\mathrm{c}}}, \quad \mathrm {a}\ne \mathrm {b}\ne \mathrm {c}\,\left( \mathrm {a},\mathrm {b},\mathrm {c}=1,2,3\right) . \end{aligned}$$
(52)

The geometric interpretation of these parameters is straightforward: \(\theta \) represents the isotropic rate of change of the 3-volume of a fluid element, while \(\sigma ^{\,\,\alpha }_{\beta }\) describes its rate of local deformation along different spatial directions given by its eigenvectors. Since the shear tensor is traceless: \(\sigma ^{\,\,\alpha }_{\alpha }=0\), it is always possible to eliminate any one of the three quantities \(\left( \varSigma _{1},\varSigma _{2},\varSigma _{3}\right) \) in terms of the other two. We choose to eliminate \(\varSigma _{1}\) as a function of \(\left( \varSigma _{2},\varSigma _{3}\right) \).

Finally, the substitution of (50) and (51) into the Einstein equations, allow us to obtain a first order system of differential equations.

Appendix 2: Particles

At temperature values in the range \(100 \,\hbox {MeV}>T>m_e\) neutrons and protons are free in chemical equilibrium. The equilibrium is possible because of reactions transforming neutrons into protons and vice versa [89]:

$$\begin{aligned} \nu _e n \leftrightarrow e^- p \, , \quad \overline{\nu }_e p \leftrightarrow e^+ n \,, \end{aligned}$$
(53)

which implies the following variation of their numbers:

$$\begin{aligned} \frac{n_n}{n_p}=e^{-\frac{\varDelta M}{T}}, \quad \varDelta M = m_n - m_p\, . \end{aligned}$$
(54)

On the other hand, for temperature values less than \(m_e\) the neutrons decay freely. Hence the densities of neutrons and protons satisfy

$$\begin{aligned} \dot{n}_n= & {} - \theta n_n - \varGamma n_n \,. \end{aligned}$$
(55)
$$\begin{aligned} \dot{n}_p= & {} - \theta n_p + \varGamma n_n \,, \end{aligned}$$
(56)

where \(\varGamma =1/\tau _n\) is the decay rate (\(\tau _n \approx 881.5\, \hbox {s} \)). Also, from the charge neutrality we have \(n_{e^-}=n_p\).

Finally, since we assume during the whole evolution a baryons/photon ratio \(\eta = 5\times 10^{-5}\), we have

$$\begin{aligned} \frac{n_b}{n_\gamma }=\frac{n_n+n_p}{n_\gamma }=\eta , \end{aligned}$$
(57)

where \(n_n\), \(n_p\) and \(n_\gamma \) are respectively the numbers density of neutrons, protons and photons. In this way we can roughly estimate the neutron and proton concentrations, a necessary task to obtain their rest energy. Since we are not interested in calculating element abundances, this rough approximated result is sufficient for our purposes. To improve these calculations the magnetic field should be included in the analysis [19], but this is beyond the scope of the present paper.

1.1 Appendix 2.1: Nucleosynthesis constraints on light elements

Since standard calculations of cosmological nucleosynthesis assume an FLRW universe with a radiation equation of state, it is worthwhile commenting on the effects of considering an anisotropic universe model on the primordial production of \(^4 \hbox {He}\). As discussed in [91], the time dependence of the radiation density is very important in determining the helium abundance. This yields the following bound for the shear eigenvalues in a Bianchi I model during the nucleosynthesis: \(\hbox {Y}_{\hbox {p}}<0.26\) requires \(\left( \sigma /H\right) <0.2\) . In the previous equations \(\hbox {Y}_{\hbox {p}}\) and \(\hbox {H}\) denote the primordial mass fraction of \(^4 \hbox {He}\) and expansion scalar, respectively, and \(\sigma ^2=\left( \varSigma _1^{\,2}+\varSigma _2^{\,2}+\varSigma _3^{\,2}\right) /2\). However, for the above considered models with magnetic fields such that \(\langle B_0 \rangle \lesssim 10^{-6} \hbox {G}\), we have that \(\left( \sigma /H\right) \ll 1\) remains valid throughout the nucleosynthesis process (notice that we assumed the anisotropy of the fluid to be caused only by the magnetic field).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado Gaspar, I., Pérez Martínez, A., Piccinelli, G. et al. A non-perturbative study of the evolution of cosmic magnetised sources. Gen Relativ Gravit 48, 7 (2016). https://doi.org/10.1007/s10714-015-2004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-2004-3

Keywords

Navigation