Skip to main content
Log in

Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (Scophthalmus maximus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Molecular cloning, characterization, and functional analysis of follicle-stimulating hormone receptor (FSHR) in female turbot (Scophthalmus maximus) were evaluated. Results showed that the full-length FSHR cDNA was 3824 bp long and contained a 2202 bp open reading frame that encoded a mature protein of 733 amino acids (aa) and a signal peptide of 18 aa. Multiple sequence analyses showed that turbot FSHR has high homology with the corresponding genes of other teleosts and significant homology with that of Hippoglossus hippoglossus. Turbot FSHR has the typical structural architecture of glycoprotein hormone receptors consisting of a large N-terminal extracellular domain, seven transmembrane domains and short C-terminal intracellular domain. FSHR mRNA was found to be abundant in the ovaries, but deficient in eyes, intestine, brain, muscle, gills, spleen, stomach, heart and kidney. Furthermore, FSHR mRNA was found to increase gradually from pre-vitellogenesis to migratory nucleus stages, with the highest values observed during the late vitellogenesis stage of the reproductive cycle. However, FSHR mRNA was found to decrease dramatically during the atresia stage. Meanwhile, functional analysis with HEK293T cells continual expressing FSHR demonstrated that FSHR was specifically stimulated by ovine FSH, but not ovine LH. These results indicate that turbot FSHR is mainly involved in the stimulation of vitellogenesis, regulation of oocyte maturation as well as promotion of ovarian development via specific ligand binding. These findings open doors to further investigation of physiological functions of FSHR, which will be valuable for fish reproduction and broodstock management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson E, Schulz RW, Male R, Bogerd J, Patiña D, Benedet S, Norberg B, Taranger GL (2013) Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: seasonal and photoperiod-induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar). Gen Comp Endocrinol 191:247–258

    Article  CAS  PubMed  Google Scholar 

  • Bogerd J (2007) Ligand-selective determinants in gonadotropin receptors. Mol Cell Endocrinol 260(262):144–152

    Article  PubMed  Google Scholar 

  • Bromley PJ, Ravier C, Witthames PR (2000) The influence of feeding regime on sexual maturation, fecundity and atresia in first-time spawning turbot. J Fish Biol 56:264–278

    Article  Google Scholar 

  • Canipari R (2000) Oocyte-granulosa cell interactions. Hum Reprod Update 6:279–289

    Article  CAS  PubMed  Google Scholar 

  • Chaffin CL, Vandevoort CA (2013) Follicle growth, ovulation, and luteal formation in primates and rodents: a comparative perspective. Exp Biol Med 238:539–548

    Article  Google Scholar 

  • Chakraborty P, Roy SK (2015) Expression of FSH receptor in the hamster ovary during perinatal development. Mol Cell Endocrinol 400:41–47

    Article  CAS  PubMed  Google Scholar 

  • Clelland E, Peng C (2009) Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 312:42–52

    Article  CAS  PubMed  Google Scholar 

  • Fortune JE (1994) Ovarian follicular growth and development in mammals. Biol Reprod 50:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hillier SG (2001) Gonadotropic control of ovarian follicular growth and development. Mol Cell Endocrinol 179:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hirai T, Oba Y, Nagahama Y (2002) Fish gonadotropin receptors: molecular characterization and expression during gametogenesis. Fish Sci Suppl 68:675–678

    Google Scholar 

  • Hurk R, Zhao J (2005) Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63:1717–1751

    Article  PubMed  Google Scholar 

  • Jia YD, Meng Z, Liu XF, Lei JL (2014a) Biochemical composition and quality of turbot (Scophthalmus maximus) eggs throughout the reproductive season. Fish Physiol Biochem 40:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Jia YD, Meng Z, Niu HX, Peng H, Lei JL (2014b) Molecular cloning, characterization, and expression analysis of luteinizing hormone receptor gene in turbot (Scophthalmus maximus L). Fish Physiol Biochem 40:1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Jiang XL, Dias JA, He XL (2014) Structural biology of glycoprotein hormone and their receptors: insights to signaling. Mol Cell Encocrinol 382:424–451

    Article  CAS  Google Scholar 

  • Jones BA (1974) Sexual maturity, fecundity and growth of the turbot Scophthalmus maximus L. J Mar Biol Assoc UK 54:109–125

    Article  Google Scholar 

  • Kene PS, Dighe RR, Mahale SD (2005) Delineation of regions in the extracellular domain of follicle-stimulating hormone receptor involved in hormone binding and signal transduction. Am J Reprod Immunol 54:38–48

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Andersen Ø (2008) The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus), 1: isolation of multiple transcripts encoding full-length and truncated variants of FSH-R. Gen Comp Endocrinol 156:584–594

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Pakarinen P, Torgersen J, Huhtaniemi I, Andersen Ø (2008) The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus)-2. Differential follicle expression and asynchronous oogenesis. Gen Comp Endocrinol 156:595–602

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Ijiri S, Trant JM (2001a) Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression. Biol Reprod 64:1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Kumar RS, Ijiri S, Tran JM (2001b) Molecular biology of the channel catfish gonadotropin receptors: 2. Complementary DNA cloning, functional expression, and seasonal gene expression of the follicle-stimulating hormone receptor. Biol Reprod 65:710–717

    Article  CAS  PubMed  Google Scholar 

  • Kwok HF, So WK, Wang Y, Ge W (2005) Zebrafish gonadotropins and their receptors: I. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone receptors-evidence for their distinct functions in follicle development. Biol Reprod 72:1370–1381

    Article  CAS  PubMed  Google Scholar 

  • Lan RX, Liu F, He ZB, Chen C, Liu SJ, Shi Y, Liu YL, Yoshimura Y, Zhang M (2014) Immunolocalization of GnRHR I, gonadotropin receptors, PGR, and PGRMC I during follicular development in the rabbit ovary. Theriogenology 81:1139–1147

    Article  CAS  PubMed  Google Scholar 

  • Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ (2010) Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 165:412–437

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Chen L, Zhou Liu, Zhou X (2012) Expression of functional follicle-stimulating hormone receptor and luteinizing hormone/chorionic gonadotrophin receptor in oviduct and uterus in prepubertal gilts. Live Sci 148:74–80

    Article  Google Scholar 

  • Liu KC, Ge W (2013) Differential regulation of gonadotropin receptors (fshr and lhcgr) by epidermal growth factor (EGF) in the zebrafish ovary. Gen Comp Endocrinol 181:288–294

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lloyd TL, Griswold MD (1995) Sequence analysis of glycoprotein hormone receptors for follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone. Biol Reprod 52(suppl 1):102

    Google Scholar 

  • Lubzens E, Young G, Bobe J, Cerdà J (2010) Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocrinol 165:367–389

    Article  CAS  PubMed  Google Scholar 

  • Luckenbach JA, Dickey JT, Swanson P (2011) Follicle-stimulating hormone regulation of ovarian transcripts for steroidogenesis-related proteins and cell survival, growth and differentiation factors in vitro during early secondary oocyte growth in coho salmon. Gen Comp Endocrinol 171:52–63

    Article  CAS  PubMed  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Maugars G, Schmitz M (2006) Molecular cloning and characterization of FSH and LH receptors in Atlantic salmon (Salmo salar L.). Gen Comp Endocrinol 149:108–117

    Article  CAS  PubMed  Google Scholar 

  • McEvoy LA (1989) Reproduction of turbot Scophthalmus maximus L in captivity. Cuard Aera Cienc Mar Semin Estud Galegos 3:9–28

    Google Scholar 

  • Menon KMJ, Menon B (2012) Structure, function and regulation of gonadotropin receptors-a perspective. Mol Cell Endocrinol 356:88–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittelholzer C, Andersson E, Taranger GL, Consten D, Hirai T, Senthilkumaran B, Nagahama Y, Norberg B (2009) Molecular characterization and quantification of the gonadotropin receptors FSH-R and LH-R from Atlantic cod (Gadus morhua). Gen Comp Endocrinol 160:47–58

    Article  CAS  PubMed  Google Scholar 

  • Molés G, Gómez A, Carrillo M, Rocha A, Mylonas CC, Zanuy S (2011) Determination of Fish quantity and bioactivity during sex differentiation and oogenesis in European sea bass. Biol Reprod 85:848–857

    Article  PubMed  Google Scholar 

  • Moyle WR, Xing YN, Lin W, Cao DH, Myers RV, Kerrigan JE, Bernard MP (2004) Model of glycoprotein hormone receptor ligand binding and signaling. J Biol Chem 279:44442–44459

    Article  CAS  PubMed  Google Scholar 

  • Mugnier C, Guennoc M, Lebegue E, Fostier A, Breton B (2000) Induction and synchronisation of spawning in cultivated turbot (Scophth almus maximus L.) broodstock by implantation of a sustained-release GnRH-a pellet. Aquaculture 181:241–255

    Article  CAS  Google Scholar 

  • Nagahama Y, Yamashita M (2008) Regulation of oocyte maturation in fish. Dev Growth Differ 50:S195–S219

    Article  CAS  PubMed  Google Scholar 

  • Nyuji M, Kitano H, Shimizu A, Lee JM, Kusakabe T, Yamaguchi A, Matsuyama M (2013) Characterization, localization, and stage-dependent gene expression of gonadotropin receptors in chub mackerel (Scomber japonicus) ovarian follicles. Biol Reprod 88(148):1–14

    Google Scholar 

  • Oba Y, Hirai T, Yoshiura Y, Yoshikuni M, Kawauchi H, Nagahama Y (1999a) Cloning, functional characterization, and expression of a gonadotropin receptor cDNA in the ovary and testis of amago Salmon (Oncorhynchus rhodurus). Biochem Biophys Res Commun 263:584–590

    Article  CAS  PubMed  Google Scholar 

  • Oba Y, Hirai T, Yoshiura Y, Yoshikuni M, Kawauchi H, Nagahama Y (1999b) The duality of fish gonadotropin receptors: cloning and functional characterization of a second gonadotropin receptor cDNA expressed in the ovary and testis of amago Salmon (Oncorhynchus rhodurus). Biochem Biophys Res Commun 265:366–371

    Article  CAS  PubMed  Google Scholar 

  • Oba Y, Hira T, Yoshiura Y, Kobayashi T, Nagahama Y (2001) Fish gonadotropin and thyrotropin receptors: the evolution of glycoprotein hormone receptors in vertebrates. Comp Biochem Physiol B 129:441–448

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo M, Yabu T, Yamashita M, Shimizu A (2013) Molecular cloning of two gonadotropin receptors in mummichog Fundulus heteroclitus and their gene expression during follicular development and maturation. Gen Comp Endocrinol 184:75–86

    Article  CAS  PubMed  Google Scholar 

  • Ribas L, Pardo BG, Fernández C, Álvarez-Diós JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F (2013) A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC Genom 14:180

    Article  CAS  Google Scholar 

  • Rocha A, Gómez A, Zanuy S, Cerdá-Reverter JM, Carrillo M (2007) Molecular characterization of two sea bass gonadotropin receptors: cDNA cloning, expression analysis, and functional activity. Mol Cell Endocrinol 272:63–76

    Article  CAS  PubMed  Google Scholar 

  • Rocha A, Zanuy S, Carrillo M, Gómez A (2009) Seasonal changes in gonadal expression of gonadotropin receptors, steroidogenic acute regulatory protein and steroidogenic enzymes in the European sea bass. Gen Comp Endocrinol 162:265–275

    Article  CAS  PubMed  Google Scholar 

  • Sambroni E, Le Gac F, Breton B, Lareyre JJ (2007) Functional specificity of the rainbow trout (Oncorhynchus mykiss) gonadotropin receptors as assayed in a mammalian cell line. J Endocrinol 195:213–228

    Article  CAS  PubMed  Google Scholar 

  • Suquet M, Billard R, Cosson J, Normant Y, Fauvel C (1995) Artificial insemination in turbot (Scophthalmus maximus): determination of the optimal sperm to egg ratio and time of gamete contact. Aquaculture 133:83–90

    Article  Google Scholar 

  • Swanson P, Dickey JT, Campbell B (2003) Biochemistry and physiology of fish gonadotropins. Fish Physiol Biochem 28:53–59

    Article  CAS  Google Scholar 

  • Ulloa-Aguirre A, Zariñán T, Pasapera A, Casas-González P, Dias J (2007) Multiple facets of follicle-stimulating hormone receptor function. Endocrine 32:251–263

    Article  CAS  PubMed  Google Scholar 

  • Vassart G, Pardo L, Costagliola S (2004) A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 29:119–126

    Article  CAS  PubMed  Google Scholar 

  • Vischer HF, Bogerd J (2003) Cloning and functional characterization of a gonadal luteinizing hormone receptor complementary DNA from the African Catfish (Clarias gariepinus). Biol Reprod 68:262–271

    Article  CAS  PubMed  Google Scholar 

  • Wallace RA, Selman K (1981) Cellular and dynamic aspects of oocyte growth in teleosts. Am Zool 21:325–343

    Article  Google Scholar 

  • Ziecik AJ, Derecka-Reszka K, Rzucidło SJ (1992) Extragonadal gonadotropin receptors, their distribution and function. Physiol Pharmacol 43:33–49

    Google Scholar 

Download references

Acknowledgments

This study was supported by China Agriculture Research System (CRAS-50), National Natural Science Foundation of China (31302205, 31402315 and 31402284), Natural Science Foundation of Shandong Province (ZR2012CQ024 and BS2013SW004) and the China Postdoctoral Science Foundation (2012M511559 and 2013T60690). We thank Chunren Gao and Xinfu Liu (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) for help in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilin Lei.

Additional information

Yudong Jia and Ai Sun have equal contribution to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Sun, A., Meng, Z. et al. Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (Scophthalmus maximus). Fish Physiol Biochem 42, 179–191 (2016). https://doi.org/10.1007/s10695-015-0128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0128-8

Keywords

Navigation