Skip to main content
Log in

Permeability Comparison of Natural and Artificial Pinus Radiata Forest Litters

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Forest litter flammability metrics have been extensively studied under laboratory conditions, but little research has been conducted in quantifying the difference between artificially reconstructed litters and natural litters. In order to assess the fire spread behaviour of natural litter beds, a sampling method was designed to obtain almost unperturbed radiata pine litters. As permeability is expected to affect flammability, this property was used for comparison between natural and artificially reconstructed litters. The pressure drop of airflow through undisturbed litter samples was measured in the vertical and horizontal direction for different flow velocities. The permeability of the specimens was obtained by fitting experimental values to the Forchheimer equation. It was found that for natural litter samples the horizontal permeability is almost unaffected by bulk density, while the vertical permeability is a decaying linear function of bulk density. It was further found that the permeability of artificially reconstructed litter samples depends exponentially on the bulk density of the sample. Surface to volume ratio, density and porosity of both types of litter are also informed, and qualitative comparison between them is given. Surface to volume ratio as well as density and porosity were notably different between natural and reconstructed litters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Cheney N (1990) Quantifying bushfires. Math Comput Model 13(12): 9–15

    Article  Google Scholar 

  2. Catchpole W, Catchpole E, Butler B, Rothermel RC, Morris GA, Latham DJ (1998) Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust Sci Technol 131(1–6): 1–37 . doi:10.1080/00102209808935753

    Article  Google Scholar 

  3. Valdivieso JP, Rivera JDD (2013) Effect of wind on smoldering combustion limits of moist pine needle beds. Fire Technol 50(6): 1589–1605. doi:10.1007/s10694-013-0357-2

    Article  Google Scholar 

  4. Ohlemiller TJ (1990) Smoldering combustion propagation through a permeable horizontal fuel layer. Combust Flame 81(3–4): 341–353 . doi:10.1016/0010-2180(90)90030-U

    Article  Google Scholar 

  5. Drysdale D (2011) An introduction to fire dynamics, 3rd edn. Wiley, New York. ISBN 0-470-31903-1

  6. Bartoli P, Simeoni A, Biteau H, Torero J, Santoni P (2011) Determination of the main parameters influencing forest fuel combustion dynamics. Fire Saf J 46(1–2): 27–33 . doi:10.1016/j.firesaf.2010.05.002

    Article  Google Scholar 

  7. Fernandez-Pello AC, Lautenberger C, Rich D, Zak C, Urban J, Hadden R, Scott S, Fereres S (2014) Spot fire ignition of natural fuel beds by hot metal particles, embers, and sparks. Combust Sci Technol 187(1–2): 269–295 . doi:10.1080/00102202.2014.973953

    Google Scholar 

  8. Manzello SL, Cleary TG, Shields JR, Yang JC (2006) On the ignition of fuel beds by firebrands. Fire Mater 30(1): 77–87. doi:10.1002/fam.901

    Article  Google Scholar 

  9. Mindykowski P, Fuentes A, Consalvi J, Porterie B (2011) Piloted ignition of wildland fuels. Fire Saf J 46(1–2): 34–40 . doi:10.1016/j.firesaf.2010.09.003

    Article  Google Scholar 

  10. Schemel CF, Simeoni A, Biteau H, Rivera JD, Torero JL (2008) A calorimetric study of wildland fuels. Exp Therm Fluid Sci 32(7): 1381–1389 . doi:10.1016/j.expthermflusci.2007.11.011

    Article  Google Scholar 

  11. Viegas DX, Almeida M, Raposo J, Oliveira R, Viegas CX (2012) Ignition of mediterranean fuel beds by several types of firebrands. Fire Technol 50(1): 61–77 . doi:10.1007/s10694-012-0267-8

    Article  Google Scholar 

  12. Yin P, Liu N, Chen H, Lozano JS, Shan Y (2012) New correlation between ignition time and moisture content for pine needles attacked by firebrands. Fire Technol 50(1): 79–91 . doi:10.1007/s10694-012-0272-y

    Article  Google Scholar 

  13. Jervis FX, Rein G (2015) Experimental study on the burning behaviour of pinus halepensis needles using small-scale fire calorimetry of live, aged and dead samples. Fire Mater. doi:10.1002/fam.2293

  14. Ganteaume A, Jappiot M, Curt T, Lampin, C, Borgniet L (2014) Flammability of litter sampled according to two different methods: comparison of results in laboratory experiments. Int J Wildland Fire 23(8): 1061–1075 . doi:10.1071/WF13045.

    Article  Google Scholar 

  15. Varner JM, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 91–99. doi:10.1007/s40725-015-0012-x

    Google Scholar 

  16. Jaganathan S, Tafreshi HV, Pourdeyhimi B (2008) A case study of realistic two-scale modeling of water permeability in fibrous media. Sep Sci Technol 43(8): 1901–1916 . doi:10.1080/01496390802063960

    Article  Google Scholar 

  17. Santoni P, Bartoli P, Simeoni A, Torero J (2014) Bulk and particle properties of pine needle fuel beds influence on combustion. Int J Wildland Fire 23(8): 1076–1086 . doi:10.1071/WF13079

    Article  Google Scholar 

  18. Rostami A, Murthy J, Hajaligol M (2003) Modeling of a smoldering cigarette. J Anal Appl Pyrolysis 66(1–2): 281–301. doi:10.1016/S0165-2370(02)00117-1

    Article  Google Scholar 

  19. He F, Behrendt F (2011) Experimental investigation of natural smoldering of char granules in a packed bed. Fire Saf J 46(7): 406–413 . doi:10.1016/j.firesaf.2011.06.007

    Article  Google Scholar 

  20. Curt T, Schaffhauser A, Borgniet L, Dumas C, Estève R, Ganteaume A, Jappiot M, Martin W, N’Diaye A, Poilvet B (2011) Litter flammability in oak woodlands and shrublands of southeastern France. For Ecol Manag 261(12): 2214–2222 . doi:10.1016/j.foreco.2010.12.002

    Article  Google Scholar 

  21. Ganteaume A, Marielle J, Corinne LM, Thomas C, Laurent B (2011) Effects of vegetation type and fire regime on flammability of undisturbed litter in Southeastern France. For Ecol Manag 261(12): 2223–2231 . doi:10.1016/j.foreco.2010.09.046

    Article  Google Scholar 

  22. Spielman L, Goren SL (1968) Model for predicting pressure drop and filtration efficiency in fibrous media. Environ Sci Technol 2(4): 279–287 . doi:10.1021/es60016a003

    Article  Google Scholar 

  23. Ruth D, Ma H (1992) On the derivation of the forchheimer equation by means of the averaging theorem. Transp Porous Media 7(3): 255–264 . doi:10.1007/BF01063962

    Article  Google Scholar 

  24. Zeng Z, Grigg R (2006) A criterion for non-darcy flow in porous media. Transp Porous Media 63(1): 57–69 . doi:10.1007/s11242-005-2720-3

    Article  Google Scholar 

  25. Forrest W, Ovington J (1970) Organic matter changes in an age series of pinus radiata plantations. Br Ecol Soc 7(1): 177–186 . http://www.jstor.org/stable/2401618

  26. Fernandes PM, Rego FC (1998) A new method to estimate fuel surface area-to-volume ratio using water immersion. Int J Wildland Fire 8(2): 59–66 . doi:10.1071/WF9980059

    Article  Google Scholar 

  27. Rein G (2009) Smouldering combustion phenomena in science and technology. Int Rev Chem Eng 1:3–18 . http://hdl.handle.net/1842/2678

  28. Hadden RM, Rein G, Belcher CM (2013) Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat. 34(2): 2547–2553 . doi:10.1016/j.proci.2012.05.060

    Article  Google Scholar 

  29. Fehrmann S (2015) Study on radiata pine forest litter sampling and its incidence on combustion. MSc, Pontificia Universidad Católica de Chile.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Jahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehrmann, S., Jahn, W. & de Dios Rivera, J. Permeability Comparison of Natural and Artificial Pinus Radiata Forest Litters. Fire Technol 53, 1291–1308 (2017). https://doi.org/10.1007/s10694-016-0631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-016-0631-1

Keywords

Navigation