Skip to main content
Log in

The contents and distributions of cadmium, mercury, and lead in Usnea antarctica lichens from Solorina Valley, James Ross Island (Antarctica)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lichens are efficient and cost-effective biomonitors of the environment. Their geographic distribution together with their slow growth rate enable investigation of the deposition patterns of various elements and substances. In this research, levels of cadmium, lead, and mercury in Usnea antarctica lichens in the area of James Ross Island, Antarctica, were investigated. The lichens were microwave-digested, and the metals were determined by means of atomic absorption spectrometry with graphite furnace and a direct mercury analyzer. Median total contents of Cd, Hg, and Pb were 0.04, 0.47, and 1.6 mg/kg in whole lichens, respectively. The bottom-up distributions of these metals in the fruticose lichen thalli were investigated, and it was revealed that the accumulation patterns for mercury and lead were opposite to that for cadmium. The probable reason for this phenomenon may lie in the inner structure of thalli. The total contents of metals were comparable with those published for other unpolluted areas of maritime Antarctica. However, this finding was not expected for mercury, since the sampling locality was close to an area with some of the highest mercury contents published for Antarctic lichens. In short, lichens proved their usability as biological monitors, even in harsh conditions. However, the findings emphasize the need to take into account the distributions of elements both in the environment and in the lichen itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400(1-3), 212–226. https://doi.org/10.1016/j.scitotenv.2008.06.062.

    Article  CAS  Google Scholar 

  • Bargagli, R. (2016a). Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas. Chemosphere, 163, 202–208. https://doi.org/10.1016/j.chemosphere.2016.08.007.

    Article  CAS  Google Scholar 

  • Bargagli, R. (2016b). Moss and lichen biomonitoring of atmospheric mercury: a review. Science of the Total Environment, 572, 216–231. https://doi.org/10.1016/j.scitotenv.2016.07.202.

    Article  CAS  Google Scholar 

  • Bargagli, R., Battisti, E., Focardi, S., & Formichi, P. (1993). Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science, 5(01). https://doi.org/10.1017/S0954102093000021.

  • Bargagli, R., Agnorelli, C., Borghini, F., & Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science and Technology, 39(21), 8150–8155. https://doi.org/10.1021/es0507315.

    Article  CAS  Google Scholar 

  • Barták, M. (2014). Lichen photosynthesis. Scaling from the cellular to the organism level. In M. F. Hohmann-Marriott (Ed.), The structural basis of biological energy generation (pp. 379–400). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-8742-0_20.

    Chapter  Google Scholar 

  • Bohuslavová, O., Šmilauer, P., & Elster, J. (2012). Usnea lichen community biomass estimation on volcanic mesas, James Ross Island, Antarctica. Polar Biology, 35(10), 1563–1572. https://doi.org/10.1007/s00300-012-1197-0.

    Article  Google Scholar 

  • Chiarenzelli, J. R., Aspler, L. B., Ozarko, D. L., Hall, G. E. M., Powis, K. B., & Donaldson, J. A. (1997). Heavy metals in lichens, southern district of Keewatin, Northwest Territories, Canada. Chemosphere, 35(6), 1329–1341. https://doi.org/10.1016/S0045-6535(97)00168-9.

    Article  CAS  Google Scholar 

  • Chiarenzelli, J., Aspler, L., Dunn, C., Cousens, B., Ozarko, D., & Powis, K. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16(2), 245–270. https://doi.org/10.1016/S0883-2927(00)00027-5.

    Article  CAS  Google Scholar 

  • Cipro, C. V., Montone, R. C., & Bustamante, P. (2017). Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. Marine Pollution Bulletin, 114(1), 564–570. https://doi.org/10.1016/j.marpolbul.2016.09.024.

    Article  CAS  Google Scholar 

  • Clerk, P. (1998). Species concept in the genus Usnea (lichenized Ascomycetes). The Lichenologist, 30(4-5), 321–340. https://doi.org/10.1006/lich.1998.0150.

    Google Scholar 

  • Coufalík, P., Zvěřina, O., Krmíček, L., Pokorný, R., & Komárek, J. (2015). Ultra-trace analysis of Hg in alkaline lavas and regolith from James Ross Island. Antarctic Science, 27(3), 281–290. https://doi.org/10.1017/S0954102014000819.

  • Culicov, O. A., Yurukova, L., Duliu, O. G., & Zinicovscaia, I. (2017). Elemental content of mosses and lichens from Livingston Island (Antarctica) as determined by instrumental neutron activation analysis (INAA). Environmental Science and Pollution Research, 24(6), 5717–5732. https://doi.org/10.1007/s11356-016-8279-4.

    Article  CAS  Google Scholar 

  • Ebinghaus, R., Kock, H. H., Temme, C., Einax, J. W., Löwe, A. G., Richter, A., Burrows, J. P., & Schroeder, W. H. (2002). Antarctic springtime depletion of atmospheric mercury. Environmental Science and Technology, 36(6), 1238–1244. https://doi.org/10.1021/es015710z.

    Article  CAS  Google Scholar 

  • Ericsson, A. (2016). Water storage in the lichen genus Usnea in Sweden and Norway. Master thesis. University of Umea, Sweden.

  • Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences, 20(4), 309–371. https://doi.org/10.1080/20013591099254.

    Article  CAS  Google Scholar 

  • Giełwanowska, I., & Olech, M. (2012). New ultrastructural and physiological features of the thallus in Antarctic lichens. Acta Biologica Cracoviensia Series Botanica, 54(1). https://doi.org/10.2478/v10182-012-0004-0.

  • Guerra, M. B., Amarasiriwardena, D., Schaefer, C. E., Pereira, C. D., Spielmann, A. A., Nóbrega, J. A., & Pereira-Filho, E. R. (2011). Biomonitoring of lead in Antarctic lichens using laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 26(11), 2238. https://doi.org/10.1039/C1JA10198F.

    Article  CAS  Google Scholar 

  • Hrbáček, F., Láska, K., & Engel, Z. (2016). Effect of snow cover on the active-layer thermal regime – a case study from James Ross Island, Antarctic eninsula. Permafrost and Periglacial Processes, 27(3), 307–315. https://doi.org/10.1002/ppp.1871.

    Article  Google Scholar 

  • Hrbáček, F., Nývlt, D., & Láska, K. (2017). Active layer thermal dynamics at two lithologically different sites on James Ross Island, Eastern Antarctic Peninsula. Catena, 149, 592–602. https://doi.org/10.1016/j.catena.2016.06.020.

    Article  Google Scholar 

  • Láska, K., Barták, M., Hájek, J., Prošek, P., & Bohuslavová, O. (2011). Climatic and ecological characteristics of deglaciated area of James Ross Island, Antarctica, with a special respect to vegetation cover. Czech Polar Reports, 1(1), 49–62. https://doi.org/10.5817/CPR2011-1-5.

    Article  Google Scholar 

  • Lim, H. S., Han, M. J., Seo, D. C., Kim, J. H., Lee, J. I., Park, H., Hur, J. S., Cheong, Y. H., Heo, J. S., Yoon, H. I., & Cho, J. S. (2009). Heavy metal concentrations in the fruticose lichen Usnea aurantiacoatra from King George Island, South Shetland Islands, West Antarctica. Journal of the Korean Society for Applied Biological Chemistry, 52(5), 503–508. https://doi.org/10.3839/jksabc.2009.086.

    Article  CAS  Google Scholar 

  • Lu, Z., Cai, M., Wang, J., Yang, H., & He, J. (2012). Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environmental Monitoring and Assessment, 184(11), 7013–7021. https://doi.org/10.1007/s10661-011-2476-x.

    Article  CAS  Google Scholar 

  • Olech, M. (1991). Preliminary observations on the content of heavy metals in thalli of Usnea antarctica Du Rietz (Lichenes) in the vicinity of the “H. Arctowski” Polish Antarctic Station. Polish Polar Research, 12(1), 129–131.

    Google Scholar 

  • Osyczka, P., Dutkiewicz, E. M., & Olech, M. (2007). Trace elements concentrations in selected moss and lichen species collected within Antarctic research stations. Polish Journal of Ecology, 55(1), 39–48.

    CAS  Google Scholar 

  • Poblet, A., Andrade, S., Scagliola, M., Vodopivez, C., Curtosi, A., Pucci, A., & Marcovecchio, J. (1997). The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Science of the Total Environment, 207(2-3), 187–194. https://doi.org/10.1016/S0048-9697(97)00265-9.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., & Berg, T. (1998). Arctic springtime depletion of mercury. Nature, 394(6691), 331–332. https://doi.org/10.1038/28530.

    Article  CAS  Google Scholar 

  • Seymour, F. A., Crittenden, P. D., Wirtz, N., Øvstedal, D. O., Dyer, P. S., & Lumbsch, H. T. (2007). Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon. Antarctic Science, 19(01). https://doi.org/10.1017/S0954102007000107.

  • Szopińska, M., Namieśnik, J., & Polkowska, Ż. (2016). How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. In P. Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 239 (pp. 79–156). Springer International Publishing. https://doi.org/10.1007/398_2015_5008.

  • Tin, T., Fleming, Z. L., Hughes, K. A., Ainley, D. G., Convey, P., Moreno, C. A., Pfeiffer, S., Scott, J., & Snape, I. (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science, 21(01), 3. https://doi.org/10.1017/S0954102009001722.

    Article  Google Scholar 

  • Zvěřina, O., Coufalík, P., Vaculovič, T., Kuta, J., Zeman, J., & Komárek, J. (2012). Macro and microelements in soil profile of the moss-covered area in James Ross Island, Antarctica. Czech Polar Reports, 2(1), 1–7. https://doi.org/10.5817/CPR2012-1-1.

    Article  Google Scholar 

  • Zvěřina, O., Láska, K., Červenka, R., Kuta, J., Coufalík, P., & Komárek, J. (2014). Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica. Environmental Monitoring and Assessment, 186(12), 9089–9100. https://doi.org/10.1007/s10661-014-4068-z.

    Article  Google Scholar 

  • Zvěřina, O., Coufalík, P., Brat, K., Červenka, R., Kuta, J., Mikeš, O., & Komárek, J. (2017). Leaching of mercury from seal carcasses into Antarctic soils. Environmental Science and Pollution Research, 24(2), 1424–1431. https://doi.org/10.1007/s11356-016-7879-3

Download references

Acknowledgements

We thank the CzechPolar-2 project for the possibility to use the facilities of the J. G. Mendel Station. We also thank all the personnel of the station and Diana Sychová for their assistance and support. The involvement of Pavel Coufalík was supported by the Institute of Analytical Chemistry of the CAS under the Institutional Research Plan RVO: 68081715. Miloš Barták was supported by Ecopolaris project CZ.02.1.01/0.0/0.0/16_013/0001708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zvěřina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvěřina, O., Coufalík, P., Barták, M. et al. The contents and distributions of cadmium, mercury, and lead in Usnea antarctica lichens from Solorina Valley, James Ross Island (Antarctica). Environ Monit Assess 190, 13 (2018). https://doi.org/10.1007/s10661-017-6397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6397-1

Keywords

Navigation