Skip to main content
Log in

Water vapor mass transport across nanofibrillated cellulose films: effect of surface hydrophobization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, porous nanofibrillated cellulose (NFC) films were utilized to produce water-resistant, porous cellulose films. Film porosities of ~ 50% were achieved through solvent exchange from water to acetone, and the resulting films were hydrophobized with an epoxy modifier in non-swelling conditions in acetone, yielding films that were non-wettable by water but permeable to water vapor. The mass transport mechanisms of gaseous and liquid water were studied by water vapor transfer rate (WVTR), water vapor uptake and water contact angle measurements to unfold how these properties were achieved. Surface hydrophobization was found to decrease the moisture uptake but it did not prevent it completely. The WVTR values were in effect similar for the initial and hydrophobized films, even if the water contact angles were higher in the latter. We anticipate that the porous and hydrophobic NFC films presented in this paper may find applications in sportswear, medical, or personal hygiene products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitomäki Y, Moreno-Rodriguez S, Lundström TS, Oksman K (2016) Vacuum infusion of cellulose nanofibre network composites: influence of porosity on permeability and impregnation. Mater Des 95:204–211

    Article  Google Scholar 

  • Alger R (1970) Proceedings of the 4th materials research symposium, Gaithersburg, MD, 26–29 Oct 1970 (Issued 1972)

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membr Sci 493:46–57

    Article  CAS  Google Scholar 

  • Bedane AH, Eić M, Farmahini-Farahani M, Xiao H (2016) Theoretical modeling of water vapor transport in cellulose-based materials. Cellulose 23:1537–1552

    Article  CAS  Google Scholar 

  • Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Hill CA, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980

    Google Scholar 

  • Jiang F, Hsieh Y (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342

    Article  CAS  Google Scholar 

  • Kontturi KS, Biegaj KW, Mautner A, Woodward RT, Wilson BP, Johansson L, Lee K, Heng JY, Bismarck A, Kontturi E (2017) Non-covalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33(23):5707–5712

    Article  CAS  Google Scholar 

  • Kulasinski K, Guyer R, Derome D, Carmeliet J (2015) Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface. Biomacromolecules 16:2972–2978

    Article  CAS  Google Scholar 

  • Larsson M, Johnsson A, Gårdebjer S, Bordes R, Larsson A (2017) Swelling and mass transport properties of nanocellulose-HPMC composite films. Mater Des 122:414–421

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Yu J, Nierstrasz VA, Bordes R (2017) Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustain Chem Eng 5(6):4793–4801

    Article  CAS  Google Scholar 

  • Niinivaara E, Faustini M, Tammelin T, Kontturi E (2016) Mimicking the humidity response of the plant cell wall by using two-dimensional systems: the critical role of amorphous and crystalline polysaccharides. Langmuir 32:2032–2040

    Article  CAS  Google Scholar 

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013a) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647

    Article  Google Scholar 

  • Österberg M, Peresin MS, Johansson L, Tammelin T (2013b) Clean and reactive nanostructured cellulose surface. Cellulose 20:983–990

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Paul UC, Fragouli D, Bayer IS, Mele E, Conchione C, Cingolani R, Moret S, Athanassiou A (2017) Mineral oil barrier sequential polymer treatment for recycled paper products in food packaging. Mater Res Express 4:015501

    Article  Google Scholar 

  • Pour G, Beauger C, Rigacci A, Budtova T (2015) Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying. J Mater Sci 50:4526–4535

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134

    Article  CAS  Google Scholar 

  • Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Tammelin T, Abburi R, Gestranius M, Laine C, Setälä H, Österberg M (2015) Correlation between cellulose thin film supramolecular structures and interactions with water. Soft Matter 11:4273–4282

    Article  CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

Download references

Acknowledgments

The VINN Excellence Centre SuMo Biomaterials is gratefully acknowledged for financial support. The authors also acknowledge Anders Mårtensson for skillful SEM work and Anne Wendel for support in the BET measurements. Furthermore, the authors thank Prof. Gunnar Westman for fruitful discussions and Chris Bonnerup for providing the NFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iina Solala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solala, I., Bordes, R. & Larsson, A. Water vapor mass transport across nanofibrillated cellulose films: effect of surface hydrophobization. Cellulose 25, 347–356 (2018). https://doi.org/10.1007/s10570-017-1608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1608-z

Keywords

Navigation