Skip to main content
Log in

Different methods for β-cyclodextrin/triclosan complexation as antibacterial treatment of cellulose substrates

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Two different production ways of antibacterial cotton fabrics by means of triclosan inclusion into a β-cyclodextrin cavity have been compared. On the one hand, triclosan has been dissolved into an aqueous solution of a β-cyclodextrin derivative with the aim of including the antibacterial agent into the cavity before grafting the β-cyclodextrin on a cotton fabric. On the other hand, the same β-cyclodextrin derivative has been grafted onto cotton and, subsequently, the fabric has been immersed into a triclosan water–ethanol solution to allow the inclusion complex formation. The antibacterial properties have been evaluated according to AATCC Test Method 100–1993 before and after two washing cycles at 60 °C. It has been shown that the durability of the antibacterial finishing depends on the production method, obtaining a more durable antibacterial action in case of prior triclosan inclusion followed by grafting. This suggests that the immobilization onto the fiber has affected the cyclodextrin cavity accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad MSK, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351:293–298. doi:10.1016/j.jcis.2010.07.049

    Article  Google Scholar 

  • Altarsha M, Ingrosso F, Ruiz-Lopez MF (2012) Cavity closure dynamics of peracetylated β-cyclodextrins in supercritical carbon dioxide. J. Phys Chem B 116:3982–3990. doi:10.1021/jp3001064

    Article  CAS  Google Scholar 

  • Birnie AJ, Bath-Hextall FJ, Ravenscroft JC, Williams HC (2008) Interventions to reduce Staphylococcus aureus in the management of atopic eczema. Cochrane Database Syst Rev 3:CD003871

    Google Scholar 

  • Budimir A, Vukusic SB, Flincec SG (2012) Study of antimicrobial properties of cotton medical textiles treated with citric acid and dried/cured by microwaves. Cellulose 19:289–296. doi:10.1007/s10570-011-9614-z

    Article  CAS  Google Scholar 

  • Cassano R, Trombino S, Ferrarelli T, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antibacterial activity evaluation of a novel cotton fiber (Gossypium barbadense) ampicillin derivative. Carbohydr Polym 78:639–641. doi:10.1016/j.carbpol.2009.05.030

    Article  CAS  Google Scholar 

  • Chmielewska D, Sartowska B (2012) Radiation synthesis of silver nanostructures in cotton matrix. Radiat Phys Chem 81(8):1244–1248. doi:10.1016/j.radphyschem.2011.11.067

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticles on cotton fabric and its antimicrobial evaluation. Cellulose 18:75–82. doi:10.1007/s10570-010-9455-1

    Article  CAS  Google Scholar 

  • Fouda MMG, Abdel-Halim ES, Al-Deyab SS (2012) Antibacterial modification of cotton using nanotechnology. Carbohydr Polym. doi:10.1016/j.carbpol.2012.09.074

    Google Scholar 

  • Fu X, Shen Y, Jiang X, Huang D, Yan Y (2011) Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydr Polym 85:221–227. doi:10.1016/j.carbpol.2011.02.019

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2005) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72. doi:10.1177/0040517507082332

    Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72. doi:10.1177/0040517507082332

    Article  CAS  Google Scholar 

  • Gauger A (2006) Silver-coated textiles in the therapy of atopic eczema. Curr Probl Dermatol 33:152–164

    Article  CAS  Google Scholar 

  • Grove C, Liebenberg W, Du Preez JL, Yang W, De Villiers MM (2203) Improving the aqueous solubility of triclosan by solubilization, complexation, and in situ salt formation. J Cosmet Sci 54(6):537–550

    Google Scholar 

  • Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274(16):11110–11114

    Article  CAS  Google Scholar 

  • Iconomopoulou SM, Andreopulou AK, Soto AJ, Kallitsis K, Voyiatzis GA (2005) Incorporation of low molecular weight biocides into polystirene-divinyl benzene beads with controlled release characteristics. J Control Release 102:223–233. doi:10.16/j.jconrel.2004.10.006

    Article  CAS  Google Scholar 

  • Liu L, Guo QX (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42:1–14

    Article  CAS  Google Scholar 

  • Lo Nostro P, Frantoni L, Baglioni P (2002) Modification of a Cellulosic fabric with β-cyclodextrin for textile finishing applications. J Incl Phenom Macrocycl Chem 44:423–427

    Article  CAS  Google Scholar 

  • Loftsson T, Brewster ME (2012) Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci 110(9):3019–3032. doi:10.1002/jps.23077

    Article  Google Scholar 

  • Loftsson T, Össurardottir IB, Thorsteinsson T, Duan M, Másson M (2005) Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: effect of ionization and polymers. J Incl Phenom Macrocycl Chem 52:109–117. doi:10.1007/s10847-004-6048-3

    Article  CAS  Google Scholar 

  • Montazer M, Alimohammadi F, Shamei A, Karim Rahimi M (2012) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloid Surf B Biointerfaces 89:196–202. doi:10.1016/j.colsurfb.2011.09.015

    Article  CAS  Google Scholar 

  • Moussa Z, El-Sharief MA, El-Sharief AM (2011) Synthesis and characterization of new types of halogenated and alkylated imidazolidineiminothiones and a comparative study of their antitumor, antibacterial, and antifungal activities. Eur J Med Chem 46(6):2280–2289. doi:10.1016/j.ejmech.2011.03.009

    Article  CAS  Google Scholar 

  • Mura P, Adragna E, Rabasco AM, Moyano JR, Pérez-Martìnez JI, Arias MJ, Ginés JM (1999) Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev Ind Pham 25(3):279–287. doi:10.1081/DDC-100102172

    Article  CAS  Google Scholar 

  • Nischala K, Rao Tata N, Hebalkar N (2011) Silica-silver core–shell particles for antibacterial textile application. Colloid Surf B Biointerfaces 82:203–208. doi:10.1016/j.colsurfb.2010.08.039

    Article  CAS  Google Scholar 

  • Peila R, Ferri A, Migliavacca G, Aimone F, Sicardi S (2012) A comparison of analytical methods for the quantification of a reactive β-cyclodextrin fixed onto cotton yarns. Cellulose 19(4):1097–1105. doi:10.1007/s10570-012-9710-8

    Article  CAS  Google Scholar 

  • Ricci G, Patrizi A, Mandrioli P, Masi M (2006) Evaluation of the antibacterial activity of a special silk textile in the treatment of atopic dermatitis. Dermatology 213:224–227

    Article  CAS  Google Scholar 

  • Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61(3):115–125. doi:10.1016/j.ejpb.2005.05.006

    Article  CAS  Google Scholar 

  • Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259

    Article  CAS  Google Scholar 

  • Veiga MD, Merino M, Cirri M, Maestrelli F, Mura P (2005) Comparative study on triclosan interactions in solution and in the solid state with natural and chemically modified cyclodextrins. J Incl Phenom Macrocycl Chem 53:77–83. doi:10.1007/s10847-005-1047-6

    Article  CAS  Google Scholar 

  • Wang J, Cai Z (2008) Incorporation of the antibacterial agent miconazole nitrate into a cellulosic fabric grafted with β-cyclodextrin. Carbohydr Polym 72:695–700. doi:10.1016/j.carbpol.2007.10.019

    Article  CAS  Google Scholar 

  • Xing Y, Yang X, Dai J (2007) Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Sol–Gel Sci Technol 43:187–192. doi:10.1007/s10971-007-1575-1

    Article  CAS  Google Scholar 

  • Zuorro A (2009) Experimental study of the inclusion of triclosan in hydroxy propyl-β-cyclodextrins. Chem Eng Trans 17:1083–1088. doi:10.3303/CET0917181

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants for the Filidea project by Regione Piemonte, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Peila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peila, R., Vineis, C., Varesano, A. et al. Different methods for β-cyclodextrin/triclosan complexation as antibacterial treatment of cellulose substrates. Cellulose 20, 2115–2123 (2013). https://doi.org/10.1007/s10570-013-9967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9967-6

Keywords

Navigation