Skip to main content
Log in

A Simple Scheme for Estimating Turbulent Heat Flux over Landfast Arctic Sea Ice from Dry Snow to Advanced Melt

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We describe a dynamic-parameter aggregation scheme to estimate hourly turbulent heat fluxes over landfast sea ice during the transition from winter to spring. Hourly albedo measurements are used to track the morphology of the surface as it evolved from a fairly smooth homogeneous dry snow surface to a rougher heterogeneous surface with spatially differential melting and melt ponds. The estimates of turbulent heat fluxes for 928 h are compared with eddy-covariance measurements. The model performance metrics (W m\(^{-2}\)) for sensible heat flux were found to be: mean bias \(=\) \(-3\), root-mean-square error \(=\) 6 and absolute accuracy \(=\) 4, and for latent heat flux near zero, 3 and 2, respectively. The correlation coefficient between modelled and measured sensible heat fluxes was 0.82, and for latent heat fluxes 0.88. The turbulent heat fluxes were estimated more accurately without adjustments than with adjustments for atmospheric stability based on the bulk Richardson number. Overall, and across all metrics for both sensible and latent heat fluxes, the dynamic-parameter aggregation scheme outperformed the static Community Ice (C-ICE) scheme, part of the Community Climate System model, applied to the same winter-to-spring transition period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreas EL (1987) A theory for the scaler roughness and the scaler transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38:159–184

    Article  Google Scholar 

  • Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010a) Parametrizing turbulent exchange over sea ice in winter. J Hydrometeorol 11:87–104. doi:10.1175/2009JHM1102.1

    Article  Google Scholar 

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010b) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J R Meteorol Soc 136:927–943

    Article  Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology, 2nd edn. Academic Press, San Diego, 420 pp

  • Barber DG (2005) Microwave remote sensing. Sea ice and arctic climate processes. Phys Can 61(Sept/Oct):105–111

  • Bintanja R, van den Broeke MR (1996) The influence of clouds on the radiation budget of ice and snow surfaces in Antarctica and Greenland in summer. Int J Climatol 16:1281–1296

    Article  Google Scholar 

  • Braithwaite RJ (1995) Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet. J Glaciol 41:562–571

    Google Scholar 

  • Braithwaite RJ (2009) Calculation of sensible-heat flux over a melting ice surface using simple climate data and daily measurements of ablation. Ann Glaciol 50:9–15

    Article  Google Scholar 

  • Briegleb BP, Bitz, CM, Hunke EC, Lipscomb WH, Holland MM, Schramm JL, Moritz RE (2004) Scientific description of the sea ice component in the Community Climate System Model, version three. NCAR Tech. Note NCAR/TN-463+STR. National Center for Atmospheric Research, Boulder, 70 pp

  • Brock BW, Willis IC, Sharp MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 52:1–17

    Article  Google Scholar 

  • Brown R, Bartlett P, MacKay M, Verseghy D (2006) Evaluation of snow cover in CLASS for SnowMIP. Atmosphere-Ocean 44:223–238. doi:10.3137/ao.440302

    Article  Google Scholar 

  • Bruland O, MareÂchal D, Sand K, Killingtveit AE (2001) Energy and water balance studies of a snow cover during snowmelt period at a high arctic site. Theor Appl Climatol 70:53–63

    Article  Google Scholar 

  • Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass balance model of snowcover suitable for operational avalanche forecasting. J Glaciol 35:333–342

    Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  • CIS (Canadian Ice Service) (2002) MANICE: manual of standard procedures for observing and reporting ice conditions, 9th edn. Canadian Ice Service, Environment Canada, Ottawa

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The Community Climate System Model version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Curry JA, Schramm JL, Ebert EE (1995) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiation characteristics. J Clim 9:1731–1764

    Article  Google Scholar 

  • Curry JA, Schramm JL, Perovich DK, Pinto O (2001) Application of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:15345–15355

    Article  Google Scholar 

  • Else BG, Papakyriakou TN, Raddatz R, Galley RJ, Mundy CJ, Barber DG, Swystun K, Rysgaard S (2014) Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset. J Geophys Res Oceans 119:3679–3693. doi:10.1002/2013JC009672

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, UK 316 pp

  • Grachev AA, Fairwell CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116:201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Granskog MA, Vihma T, Pirazzini R, Cheng B (2006) Superimposed ice formation and surface energy fluxes on sea ice during the spring melt-freeze period in the Baltic Sea. J Glaciol 52:119–127. doi:10.3189/172756506781828971

    Article  Google Scholar 

  • Guo X, Zhang H, Cai X, Kang L, Li W, Du J (2007) Discrepancy and applicability of various similarity functions in flux calculations under stable conditions. Adv Atmos Sci 24:644–654

    Article  Google Scholar 

  • Helgason W, Pomeroy J (2012) Problems closing the energy balance over a homogeneous snow cover during midwinter. J Hydrometeol 13:557–571. doi:10.1175/JHM-D-11-0135.1

    Article  Google Scholar 

  • Hicks BB, Martin HC (1972) Atmospheric turbulent fluxes over snow. Boundary-Layer Meteorol 2:496–502

    Article  Google Scholar 

  • Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Phys 25:873–885

    Article  Google Scholar 

  • Howell SEL, Duguay CR, Markus T (2009) Sea ice conditions and melt season duration variability within the Canadian Arctic Archipelago: 1979–2008. Geophys Res Lett 36:L10502. doi:10.1029/2009GL037681

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2008) C-ICE: the Los Alamos sea ice model, documentation and software user’s manual, version 4.0. Tech Rep, LA-CC-06-012. Los Alamos National Laboratory, Los Alamos, 59 pp

  • Iacozza J, Barber DG (2001) Ablation patterns of snow cover over smooth first-year sea ice in the Canadian Arctic. Hydrol Process 15:3359–3569

    Article  Google Scholar 

  • Jordan RE, Andreas EL, Makshtas AP (1999) Heat budget of snow-covered sea ice at North Pole 4. J Geophys Res 104(C4):7785–7806

    Article  Google Scholar 

  • Kiehl JT, Gent PR (2004) The Community Climate System Model, version 2. J Clim 17:3666–3682

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol 8:828–832

    Article  Google Scholar 

  • Maksimovich E, Vihma T (2012) The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J Geophys Res 117:C07012. doi:10.1029/2011JC007220

    Google Scholar 

  • Male DH (1980) The seasonal snowcover. In: Colbeck S (ed) Dynamics of snow and ice masses. Academic Press, Toronto, pp 305–395

    Chapter  Google Scholar 

  • Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi:10.1029/2009JC005436

    Article  Google Scholar 

  • Maslanik J, Stroeve J, Fowler C, Emery W (2011) Distribution and trends in Arctic sea ice age through spring 2011. Geophys Res Lett 38:L13502

    Article  Google Scholar 

  • Mundy CJ, Gosselin M, Gratton Y, Brown K, Galindo V, Campbell K, Levasseur M, Barber D, Papakyriakou T, Bélanger S (2014) The role of environmental factors on under-ice phytoplankton bloom initiation: a case study on landfast sea ice in Resolute Passage, Canada. Mar Ecol Prog Ser 497:39–49. doi:10.3354/meps10587

    Article  Google Scholar 

  • Ohmura A (2001) Physical basis for the temperature based melt index method. J Appl Meteorol 40:753–761

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen, London 435 pp

    Google Scholar 

  • Oke TR (1997) Surface climate processes. In: Bailey WG, Oke TR, Rouse WR (eds) Surface climates of Canada. McGill-Queens University Press, Montreal, p 369

    Google Scholar 

  • Paterson SB (1994) The physics of glaciers, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Perovich DK, Polashenski C (2012) Albedo evolution of seasonal Arctic sea ice. Geophys Res Lett 39:L08501. doi:10.1029/2012GL051432

    Article  Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res Oceans 107(C10):8044. doi:10.1029/2000JC000438

    Article  Google Scholar 

  • Persson POG (2012) Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Clim Dyn 39:1349–1371. doi:10.1007/s00382-011-1196-9

    Article  Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10):8045. doi:10.1029/2000JC000705

    Article  Google Scholar 

  • Raddatz RL, Asplin MG, Papakyriakou T, Candlish LM, Galley RJ, Else B, Barber DG (2013) All sky downwelling longwave radiation and atmospheric-column water vapour and temperature over the western maritime Arctic. Atmosphere-Ocean 51:145–152. doi:10.1080/07055900.2012.760441

    Article  Google Scholar 

  • Raddatz RL, Galley RJ, Else B, Papakyriakou T, Asplin MG, Candlish LM, Barber DG (2014) Western Arctic cyclones and equilibrium between the atmospheric boundary layer and the sea surface. Atmosphere-Ocean 52:125–141

    Article  Google Scholar 

  • Schroder D, Vihma T, Kerber A, Brümmer B (2003) On the parameterization of turbulent surface fluxes over heterogeneous sea ice surfaces. J Geophys Res 108(C6):3195. doi:10.1029/2002JC001385

    Article  Google Scholar 

  • Sedlar J, Tjernström M, Mauritsen T, Shupe MD, Brooks IM, Persson POG, Birch CE, Leck C, Sirevaag A, Nicolaus M (2011) A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim Dyn 37:1643–1660. doi:10.1007/s00382-010-0937-5

    Article  Google Scholar 

  • Sepp M, Jaagus J (2011) Changes in the activity and tracks of Arctic cyclones. Clim Change 105:577–595. doi:10.1007/s10584-010-9893-7

    Article  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi:10.1126/science.1139426

    Article  Google Scholar 

  • Stull RB (2000) Meteorology for scientists and engineers, 2nd edn. Brooks/Cole, Pacific Grove 502 pp

    Google Scholar 

  • van den Broeke M, van As D, Reijmer C, van de Wal R (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J Atmos Ocean Technol 21:1417–1431

    Article  Google Scholar 

  • Verseghy DL (2000) The Canadian Land Surface Scheme (CLASS): its history and future. Atmosphere-Ocean 38:1–13. doi:10.1080/07055900.2000.9649637

    Article  Google Scholar 

  • Vickers D, Göckede M, Law BE (2010) Uncertainity estimates for 1-h averaged turbulence fluxes of carbon dioxide, latent heat and sensible heat. Tellus 62B:87–99. doi:10.1111/j.1600-0889.2009.00449.x

    Article  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

Download references

Acknowledgments

Field support for the Arctic-ICE project was provided by the Polar Continental Shelf Program of Natural Resources Canada and through Northern Research Supplement Discovery grants from the Natural Sciences and Engineering Research Council of Canada. Additional support was provided by Fisheries and Oceans Canada, the Canadian International Polar Year federal program, the Canada Foundation for Innovation, the Canada Excellence Research Chair in Arctic Geomicrobiology and Climate Change, and a Canada Research Chair Grant. This paper is a contribution to the ArcticNet and Arctic Science Partnership programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Raddatz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raddatz, R.L., Papakyriakou, T.N., Else, B.G. et al. A Simple Scheme for Estimating Turbulent Heat Flux over Landfast Arctic Sea Ice from Dry Snow to Advanced Melt. Boundary-Layer Meteorol 155, 351–367 (2015). https://doi.org/10.1007/s10546-014-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-0002-8

Keywords

Navigation