Skip to main content
Log in

Computational Models Provide Insight into In Vivo Studies and Reveal the Complex Role of Fibrosis in mdx Muscle Regeneration

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Duchenne muscular dystrophy is a pro-fibrotic, muscle wasting disease. Reducing fibrosis is a potential therapeutic target; however, its effect on muscle regeneration is not fully understood. This study (1) used an agent-based model to predict the effect of increased fibrosis in mdx muscle on regeneration from injury, and (2) experimentally tested the resulting model-derived hypothesis. The model predicted that increasing the area fraction of fibrosis decreased regeneration 28 days post injury due to limited growth factor diffusion and impaired cell migration. WT, mdx, and TGFβ-treated mdx mice were used to test this experimentally. TGFβ injections increased the extracellular matrix (ECM) area fraction; however, the passive stiffness of the treated muscle, which was assumed to correlate with ECM protein density, decreased following injections, suggesting that ECM protein density was lower. Further, there was no cross-sectional area (CSA) difference during recovery between the groups. Additional simulations revealed that decreasing the ECM protein density resulted in no difference in CSA, similar to the experiment. These results suggest that increases in ECM area fraction alone are not sufficient to reduce the regenerative capacity of mdx muscle, and that fibrosis is a complex pathological condition requiring further understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Acuña, M. J., P. Pessina, H. Olguin, D. Cabrera, C. P. Vio, M. Bader, P. Muñoz-canoves, R. A. Santos, C. Cabello-verrugio, and E. Brandan. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum Mol Genet 23:1237–1249, 2014.

    PubMed  Google Scholar 

  2. Avery, N. C., and A. J. Bailey. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: Relevance to aging and exercise. Scand J Med Sci Sport 15:231–240, 2005.

    CAS  Google Scholar 

  3. Benedetti, S., H. Hoshiya, and F. S. Tedesco. Repair or replace? Exploiting novel gene and cell therapy strategies for muscular dystrophies. FEBS J 280:4263–4280, 2013.

    CAS  PubMed  Google Scholar 

  4. Bloch, R. J., and H. Gonzalez-Serratos. Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31:73–78, 2003.

    PubMed  Google Scholar 

  5. Cabello-Verrugio, C., C. Santander, C. Cofré, M. J. Acuña, F. Melo, and E. Brandan. The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates Transforming Growth Factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles. J Biol Chem 287:6773–6787, 2012.

    CAS  PubMed  Google Scholar 

  6. Chelly, J., and I. Desguerre. Progressive muscular dystrophies. Handb Clin Neurol 113:1343–1366, 2013.

    PubMed  Google Scholar 

  7. Chen, X., and Y. Li. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3:337–341, 2009.

    Google Scholar 

  8. Contreras, O., D. L. Rebolledo, J. E. Oyarzún, H. C. Olguín, and E. Brandan. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 2016. https://doi.org/10.1007/s00441-015-2343-0.

    Article  PubMed  Google Scholar 

  9. Fomovsky, G. M., and J. W. Holmes. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol 298:H221–H228, 2010.

    CAS  PubMed  Google Scholar 

  10. García-Pelagio, K., R. Bloch, A. Ortega, and H. González-Serratos. Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice. J Muscle Res Cell Motil 31:323–336, 2011.

    PubMed  PubMed Central  Google Scholar 

  11. Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hakim, C. H., R. W. Grange, and D. Duan. The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice. J Appl Physiol 110:1656–1663, 2011.

    PubMed  PubMed Central  Google Scholar 

  13. Hoffman, E. P., R. H. Brown, and L. M. Kunkel. Dystrophin: the protein product of the duchenne muscular dystrophy locus. Cell 51:919–928, 1987.

    CAS  PubMed  Google Scholar 

  14. Koenig, M., A. P. Monaco, and L. M. Kunkel. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228, 1988.

    CAS  PubMed  Google Scholar 

  15. Kole, R., and A. M. Krieg. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev 87:104–107, 2015.

    CAS  PubMed  Google Scholar 

  16. Lemos, D. R., F. Babaeijandaghi, M. Low, C.-K. Chang, S. T. Lee, D. Fiore, R.-H. Zhang, A. Natarajan, S. A. Nedospasov, and F. M. V. Rossi. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21:786–794, 2015.

    CAS  PubMed  Google Scholar 

  17. Li, Y., W. Foster, B. M. Deasy, Y. Chan, V. Prisk, Y. Tang, J. Cummins, and J. Huard. Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle. Am J Pathol 164:1007–1019, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin, K. S., S. S. Blemker, and S. M. Peirce. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. J Appl Physiol 118:1299–1309, 2015.

    PubMed  PubMed Central  Google Scholar 

  19. Martin, K. S., C. D. Kegelman, K. M. Virgilio, J. A. Passipieri, G. J. Christ, S. S. Blemker, and S. M. Peirce. In silico and in vivo experiments reveal M-CSF injections accelerate regeneration following muscle laceration. Ann Biomed Eng 45(3):747–760, 2017.

    PubMed  Google Scholar 

  20. McDonald, A. A., S. L. Hebert, M. D. Kunz, S. J. Ralles, and L. K. McLoon. Disease course in mdx:utrophin+/- mice: comparison of three mouse models of Duchenne muscular dystrophy. Physiol Rep 3:e12391–e12391, 2015.

    PubMed  PubMed Central  Google Scholar 

  21. Mendell, J. R., L. R. Rodino-Klapac, Z. Sahenk, K. Roush, L. Bird, L. P. Lowes, L. Alfano, A. M. Gomez, S. Lewis, J. Kota, V. Malik, K. Shontz, C. M. Walker, K. M. Flanigan, M. Corridore, J. R. Kean, H. D. Allen, C. Shilling, K. R. Melia, P. Sazani, J. B. Saoud, and E. M. Kaye. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74:637–647, 2013.

    CAS  PubMed  Google Scholar 

  22. Meyer, G. A., and R. L. Lieber. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech 44:771–773, 2011.

    PubMed  Google Scholar 

  23. Monaco, A. P., R. L. Neve, C. Colletti-Feener, C. J. Bertelson, D. M. Kurnit, and L. M. Kunkel. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323:646–650, 1986.

    CAS  PubMed  Google Scholar 

  24. Muir, L. A., and J. S. Chamberlain. Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 11:e18, 2009.

    PubMed  PubMed Central  Google Scholar 

  25. Murphy, M. M., J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pessina, P., D. Cabrera, M. G. Morales, C. A. Riquelme, J. Gutiérrez, A. L. Serrano, E. Brandan, and P. Muñoz-Cánoves. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle 4:7, 2014.

    PubMed  PubMed Central  Google Scholar 

  27. Pratt, S. J. P., S. B. Shah, C. W. Ward, J. P. Kerr, J. P. Stains, and R. M. Lovering. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci 72:153–164, 2014.

    PubMed  PubMed Central  Google Scholar 

  28. Reimann, J., A. Irintchev, and A. Wernig. Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromuscul Disord 10:276–282, 2000.

    CAS  PubMed  Google Scholar 

  29. Rosenberg, A. S., K. Nagaraju, E. P. Hoffman, S. A. Villalta, V. A. Rao, L. M. Wakefield, and J. Woodcock. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med 7:1–13, 2015.

    CAS  Google Scholar 

  30. Sanderson, R. D., J. M. Fitch, T. R. Linsenmayer, and R. Mayne. Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J Cell Biol 102:740–747, 1986.

    CAS  PubMed  Google Scholar 

  31. Schäfer, R., M. Zweyer, U. Knauf, R. R. Mundegar, and A. Wernig. The ontogeny of soleus muscles in mdx and wild type mice. Neuromuscul Disord 15:57–64, 2005.

    PubMed  Google Scholar 

  32. Siegel, A. L., P. K. Kuhlmann, and D. D. W. Cornelison. Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet Muscle 1:7, 2011.

    PubMed  PubMed Central  Google Scholar 

  33. Smith, L. R., and E. R. Barton. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol 306:C889–C898, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Summan, M., G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman, N. Van Rooijen, and P. P. Simeonova. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290:R1488–R1495, 2006.

    CAS  PubMed  Google Scholar 

  35. Tedesco, F. S., H. Hoshiya, G. D’Antona, M. F. M. Gerli, G. Messina, S. Antonini, R. Tonlorenzi, S. Benedetti, L. Berghella, Y. Torrente, Y. Kazuki, R. Bottinelli, M. Oshimura, and G. Cossu. Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3:96ra78, 2011.

    CAS  PubMed  Google Scholar 

  36. Tidball, J. G., K. Dorshkind, and M. Wehling-Henricks. Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 141:1184–1196, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Uezumi, A., S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152, 2010.

    CAS  PubMed  Google Scholar 

  38. Villalta, S. A., B. Deng, C. Rinaldi, M. Wehling-Henricks, and J. G. Tidball. IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. JImmunol 187:5419–5428, 2011.

    CAS  Google Scholar 

  39. Villalta, S. A., H. X. Nguyen, B. Deng, T. Gotoh, and J. G. Tidbal. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496, 2009.

    CAS  PubMed  Google Scholar 

  40. Villalta, S. A., A. S. Rosenberg, and J. A. Bluestone. The immune system in Duchenne muscular dystrophy: Friend or foe. Rare Dis (Austin, Tex) 3:e1010966, 2015.

    Google Scholar 

  41. Virgilio, K. M., K. S. Martin, S. M. Peirce, and S. S. Blemker. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus 5:20140080, 2015.

    PubMed  PubMed Central  Google Scholar 

  42. Virgilio, X. K. M., K. S. Martin, S. M. Peirce, S. S. Blemker, V. Km, M. Ks, P. Sm, and B. S. S. Agent-based. Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol 125:1424–1439, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, W., H. Pan, K. Murray, B. S. Jefferson, and Y. Li. Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol 174:541–549, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Warren, G. L., T. Hulderman, N. Jensen, M. Mckinstry, M. Mishra, M. I. Luster, P. P. Simeonova, M. B. Branch, H. Effects, O. Safety, and W. Virginia. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J 2002. https://doi.org/10.1096/fj.02-0187fje.

    Article  PubMed  Google Scholar 

  45. Wehling, M., M. J. Spencer, and J. G. Tidball. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yennek, S., M. Burute, M. Thery, and S. Tajbakhsh. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Rep 7:961–970, 2014.

    CAS  PubMed  Google Scholar 

  47. Zhou, L., and H. Lu. Targeting fibrosis in duchenne muscular dystrophy. J neuropathol Exp Neurol 69:771–776, 2010.

    PubMed  PubMed Central  Google Scholar 

  48. Zou, Y., R.-Z. Zhang, P. Sabatelli, M.-L. Chu, and C. G. Bönnemann. Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol 67:144–154, 2008.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by National Institute of Health (U01-AR-06393).

Conflict of interest

All authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia S. Blemker.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virgilio, K.M., Jones, B.K., Miller, E.Y. et al. Computational Models Provide Insight into In Vivo Studies and Reveal the Complex Role of Fibrosis in mdx Muscle Regeneration. Ann Biomed Eng 49, 536–547 (2021). https://doi.org/10.1007/s10439-020-02566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02566-1

Keywords

Navigation