Skip to main content

Mouse Models of Muscle Fibrosis

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

Abstract

Fibrosis in skeletal muscle is the natural tissue response to persistent damage and chronic inflammatory states, cursing with altered muscle stem cell regenerative functions and increased activation of fibrogenic mesenchymal stromal cells. Exacerbated deposition of extracellular matrix components is a characteristic feature of human muscular dystrophies, neurodegenerative diseases affecting muscle and aging. The presence of fibrotic tissue not only impedes normal muscle contractile functions but also hampers effective gene and cell therapies. There is a lack of appropriate experimental models to study fibrosis. In this chapter, we highlight recent developments on skeletal muscle fibrosis in mice and expand previously described methods by our group to exacerbate and accelerate fibrosis development in murine muscular dystrophy models and to study the presence of fibrosis in muscle samples. These methods will help understand the molecular and biological mechanisms involved in muscle fibrosis and to identify novel therapeutic strategies to limit the progression of fibrosis in muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gieseck RL 3rd, Wilson MS, Wynn TA (2018) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18(1):62–76

    Article  CAS  PubMed  Google Scholar 

  3. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munoz-Canoves P, Serrano AL (2015) Macrophages decide between regeneration and fibrosis in muscle. Trends Endocrinol Metab 26(9):449–450

    Article  CAS  PubMed  Google Scholar 

  5. Rockey DC, Bell PD, Hill JA (2015) Fibrosis--a common pathway to organ injury and failure. N Engl J Med 373(1):96

    Article  PubMed  CAS  Google Scholar 

  6. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pessina P, Kharraz Y, Jardi M, Fukada S, Serrano AL, Perdiguero E et al (2015) Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy. Stem Cell Reports 4(6):1046–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serrano AL, Mann CJ, Vidal B, Ardite E, Perdiguero E, Munoz-Canoves P (2011) Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 96:167–201

    Article  CAS  PubMed  Google Scholar 

  9. Serrano AL, Munoz-Canoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316(18):3050–3058

    Article  CAS  PubMed  Google Scholar 

  10. Serrano AL, Munoz-Canoves P (2017) Fibrosis development in early-onset muscular dystrophies: mechanisms and translational implications. Semin Cell Dev Biol 64:181–190

    Article  CAS  PubMed  Google Scholar 

  11. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321

    Article  CAS  PubMed  Google Scholar 

  12. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14(12):1062–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wosczyna MN, Rando TA (2018) A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev Cell 46(2):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152

    Article  CAS  PubMed  Google Scholar 

  16. Wosczyna MN, Konishi CT, Perez Carbajal EE, Wang TT, Walsh RA, Gan Q et al (2019) Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep 27(7):2029–2035. e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D et al (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794

    Article  CAS  PubMed  Google Scholar 

  18. Murray IR, Gonzalez ZN, Baily J, Dobie R, Wallace RJ, Mackinnon AC et al (2017) Alphav integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat Commun 8(1):1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E et al (2019) Cross-talk between TGF-beta and PDGFRalpha signaling pathways regulates the fate of stromal fibro-adipogenic progenitors. J Cell Sci 132(19)

    Google Scholar 

  20. Biferali B, Proietti D, Mozzetta C, Madaro L (2019) Fibro-adipogenic progenitors cross-talk in skeletal muscle: the social network. Front Physiol 10:1074

    Article  PubMed  PubMed Central  Google Scholar 

  21. Contreras O, Rebolledo DL, Oyarzun JE, Olguin HC, Brandan E (2016) Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell Tissue Res 364(3):647–660

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, van Zundert B, Brandan E (2017) ALS skeletal muscle shows enhanced TGF-beta signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One 12(5):e0177649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutierrez J, Serrano AL et al (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne muscular dystrophy. Skelet Muscle 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Belhasan DC, Akaaboune M (2020) The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci Lett 722:134833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE et al (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang NC, Sincennes MC, Chevalier FP, Brun CE, Lacaria M, Segales J et al (2018) The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment. Cell Stem Cell 22(5):755–768. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahdy MAA (2019) Skeletal muscle fibrosis: an overview. Cell Tissue Res 375(3):575–588

    Article  PubMed  Google Scholar 

  28. Smith LR, Barton ER (2018) Regulation of fibrosis in muscular dystrophy. Matrix Biol 68–69:602–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Salimena MC, Lagrota-Candido J, Quirico-Santos T (2004) Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol 122(5):435–444

    Article  CAS  PubMed  Google Scholar 

  30. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539

    Article  CAS  PubMed  Google Scholar 

  31. Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M et al (2010) Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176(5):2414–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Putten M, Putker K, Overzier M, Adamzek WA, Pasteuning-Vuhman S, Plomp JJ et al (2019) Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy. FASEB J 33(7):8110–8124

    Article  PubMed  PubMed Central  Google Scholar 

  33. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues M, Echigoya Y, Fukada SI, Yokota T (2016) Current translational research and murine models for Duchenne muscular dystrophy. J Neuromuscul Dis. 3(1):29–48

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yucel N, Chang AC, Day JW, Rosenthal N, Blau HM (2018) Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 3:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhou L, Rafael-Fortney JA, Huang P, Zhao XS, Cheng G, Zhou X et al (2008) Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. J Neurol Sci 264(1–2):106–111

    Article  CAS  PubMed  Google Scholar 

  37. Gutpell KM, Hrinivich WT, Hoffman LM (2015) Skeletal muscle fibrosis in the mdx/utrn+/− mouse validates its suitability as a murine model of Duchenne muscular dystrophy. PLoS One 10(1):e0117306

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chandrasekharan K, Yoon JH, Xu Y, de Vries S, Camboni M, Janssen PM et al (2010) A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy. Sci Transl Med 2(42):42ra54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P et al (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143(7):1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazala DA, Novak JS, Hogarth MW, Nearing M, Adusumalli P, Tully CB et al (2020) TGF-beta-driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model. JCI Insight 5(6)

    Google Scholar 

  41. Brussee V, Tardif F, Tremblay JP (1997) Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromuscul Disord 7(8):487–492

    Article  CAS  PubMed  Google Scholar 

  42. Vilquin JT, Brussee V, Asselin I, Kinoshita I, Gingras M, Tremblay JP (1998) Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise. Muscle Nerve 21(5):567–576

    Article  CAS  PubMed  Google Scholar 

  43. Mathur S, Vohra RS, Germain SA, Forbes S, Bryant ND, Vandenborne K et al (2011) Changes in muscle T2 and tissue damage after downhill running in mdx mice. Muscle Nerve 43(6):878–886

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lopez-De Leon A, Rojkind M (1985) A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 33(8):737–743

    Article  CAS  PubMed  Google Scholar 

  45. Gordish-Dressman H, Willmann R, Dalle Pazze L, Kreibich A, van Putten M, Heydemann A et al (2018) “Of mice and measures”: a project to improve how we advance Duchenne muscular dystrophy therapies to the clinic. J Neuromuscul Dis 5(4):407–417

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hyzewicz J, Ruegg UT, Takeda S (2015) Comparison of experimental protocols of physical exercise for mdx mice and Duchenne muscular dystrophy patients. J Neuromuscul Dis 2(4):325–342

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marqueste T, Giannesini B, Fur YL, Cozzone PJ, Bendahan D (2008) Comparative MRI analysis of T2 changes associated with single and repeated bouts of downhill running leading to eccentric-induced muscle damage. J Appl Physiol (1985) 105(1):299–307

    Article  Google Scholar 

  48. Zelikovich AS, Quattrocelli M, Salamone IM, Kuntz NL, McNally EM (2019) Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Sci Rep 9(1):5770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Aartsma-Rus A, van Putten M (2014) Assessing functional performance in the mdx mouse model. J Vis Exp 85

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Spanish Ministry of Science, Innovation and Universities, Spain (grants SAF2015-67369-R, RTI2018-096068-B-I00, and SAF 2015-70270-REDT, a María de Maeztu Unit of Excellence award to UPF [MDM-2014-0370], and the UPF-CNIC collaboration agreement, ERC-2016-AdG-741966, La Caixa-HEALTH (HR17-00040), MDA, UPGRADE-H2020-825825, AFM, DPP-E and Fundació La Marató de TV3 (grant no. 202033 to A.L.S. and no. 202021 to P.M.C.). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio L. Serrano or Pura Muñoz-Cánoves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serrano, A.L., Muñoz-Cánoves, P. (2021). Mouse Models of Muscle Fibrosis. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics